
Prime Computer, Inc.

DOC5025-2LA
EMACS Extension
Writing Guide
Revision 19.4

EMACS Extension Writing
Guide

Second Edition

by
Barry M. Kingsbury

and
John Xenakis

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 19.4 (Rev. 19.4).

Prime Computer, Inc.
Prime Park

Natick, Massachusetts 01760

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc. assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
l icense.

C o p y r i g h t © 1 9 8 6 b y ^
Prime Computer, Inc.

Prime Park
Natick, Massachusetts 01760

PRIME, PRIME, and PRIMOS are registered trademarks of Prime Computer,
Inc.

PRIMENET, RINGNET, Prime INFORMATION, MIDASPLUS, Electronic Design
Management System, EEMS, FDMS, PRIMEWAY, Prime Producer 100,
INFO/BASIC, PST 100, PW200, PW150, 2250, 9950, THE PROGRAMMER'S
COMPANION, and PRISAM are trademarks of Prime Computer, Inc.

CREDITS

E d i t o r H e r b e r t K o r n

Te c h n i c a l S u p p o r t P e t e r N e i l s o n

P r o j e c t S u p p o r t P h i l F u l c h i n o

Product ion Support Judy Gordon

Document Preparation Mary Mixon

i i

PRINTING HISTORY EMACS EXTENSION WRITING GUIDE

Ed i t i on Date Number Software Release

First Edition
Second Edition

March 1982
January 1986

3DR5025
DOC5025-2LA

18.3
19.4

In document numbers, L indicates loose-leaf.

CUSTOMER SUPPORT CENTER

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts)
1-800-343-2320 (within other states)

1-800-541-8888 (within Alaska)
1-800-651-1313 (within Hawaii)

HOW TO OFDER TECHNICAL DOCUMENTS

Follow the instructions below to obtain a catalog, price list, and
information on placing orders.

United States Only

Call Prime Telemarketing,
toll free, at 800-343-2533,
Monday through Friday,
8:30 a.m. to 8:00 p.m. (EST)

International

Contact your local Prime
subsidiary or distributor.

i n

Contents

A B O U T T H I S B O O K i x

1 INTRODUCTION

F i n d i n g I n f o r m a t i o n 1 - 1
The Relationship Between PEEL,

EMACS, and Your Commands 1-3
How to Find Out What a Statement

D o e s 1 - 4
L I S P 1 - 4

2 CREATING, TRANSFORMING, AND BINDING
EXTENSIONS

C r e a t i n g a K e y b o a r d M a c r o 2 - 2
Converting a Macro Into a

PEEL Source Code Extension 2-3
U s i n g P E E L S o u r c e C o d e 2 - 6

Making the New Command
A v a i l a b l e t o E M A C S 2 - 7

Saving Source Code in a File 2-7
Creating PEEL Source Libraries 2-8

Binding an Extension to a Key 2-8
K e y P a t h C o n v e n t i o n s 2 - 9
Control Characters in Key Paths 2-10
L e t t e r i n a K e y P a t h 2 - 1 1
Key Binding Within Local

B u f f e r O n l y 2 - 1 1
Adding Key Binding to a PEEL

S o u r c e L i b r a r y 2 - 1 1
EMACS Fast Load (EFASL) Files 2-12

F i l e N a m i n g C o n v e n t i o n s 2 - 1 3
Loading Extensions: Library

M a n a g e m e n t 2 - 1 3
Summary of Steps for Creating

E x t e n s i o n s 2 - 1 4
W h a t i s N e x t 2 - 1 5

3 ELEMENTARY PEEL PROGRAMMING

PEEL as a Programming Language 3-1
Elements of List Processing 3-2

Atoms 3-2
Integer and String Atoms 3-2
L i s t s 3-3
Nested Lists 3-4
Symbolic Expressions

(S-Expressions) and Forms 3-4
Evaluation of S-Expressions 3-4

How to Execute PEEL Programs 3-4
Output From PEEL Programs 3-5
The Value of an S-Expression 3-6
Evaluating S-Expressions: Effect

and Side-effect 3-9
Assignments 3-10

The Setq Function 3-10
The Quote (') Operator 3-10
Eval Function 3-11
PEEL Data Types 3-12

Arithmetic Operations 3-13
Addition and Multiplication 3-14
Subtraction and Negation 3-15
Incrementing or Decrementing

by One 3-15
Division and Modulo 3-16
Forms and Nested Statements 3-17

ARRAYS 3-18
Creating an Array 3-18
Assigning Values to an Array 3-19
Filling All or a Portion of

an Array 3-20
Referencing an Array 3-21
Arrays of Other Data Types 3-21
Arrays With Multiple Names 3-23
Releasing Storage Allocated

to an Array 3-23
Other Array Functions 3-24

Functions That Manipulate
L i s t s 3-25
Referencing Lists 3-25
Forming Lists 3-27
Pulling Apart Lists 3-28

OGIC AND LOOPING

Looping 4-2
Looping With Arrays 4-4

Decision Statements 4-5
The If Form 4-5
Buffer Conditions 4-6

V I

A c t i o n C o m m a n d s 4 - 7
Boolean and Relational

O p e r a t o r s 4 - 8
T h e S e l e c t S t a t e m e n t 4 - 9
T h e D i s p a t c h S t a t e m e n t 4 - 1 1

5 WRITING EXTENSIONS

The EMACS/PEEL Env i ronment 5-1
T h e D e f c o m F u n c t i o n 5 - 2

Inserting a Documentation Line 5-3
Argument Handling With Defcom 5-3

Using Numeric Argument as a
R e p e a t F a c t o r 5 - 4

Passing the Numeric Argument
t o a V a r i a b l e 5 - 5

S p e c i fi c a t i o n f o r & n a 5 - 5
Prompting for an Argument Value 5-6
S p e c i fi c a t i o n s f o r & a r g s 5 - 7

F o r m a t o f D e f c o m 5 - 8
F u r t h e r E x a m p l e s 5 - 1 0

T h e D e f u n F u n c t i o n 5 - 1 1
Format o f a S imp le Defun 5-12
Func t i on Wi thou t A rgumen ts 5 -13
Function With a Single Argument 5-14
Functions With Several Arguments 5-15
Function With a Single

O p t i o n a l A r g u m e n t 5 - 1 5
Functions With Some Required

and Some Optional Arguments 5-16
L o c a l V a r i a b l e s 5 - 1 6
Functions That Return Values 5-19
Another Example of &returns 5-22

F o r m a t o f D e f u n 5 - 2 3
Combining Defcom Commands With

D e f u n F u n c t i o n s 5 - 2 4
P E E L D a t a T y p e s 5 - 2 6
G l o b a l a n d L o c a l Va r i a b l e s 5 - 2 8

G l o b a l V a r i a b l e s 5 - 2 8
L o c a l V a r i a b l e s 5 - 2 9
P r o p e r t i e s o f a Va r i a b l e 5 - 3 0
S c o p e o f a V a r i a b l e 5 - 3 0
S e p a r a t i o n o f F u n c t i o n s 5 - 3 1
Allocation and Freeing of

L o c a l V a r i a b l e s 5 - 3 1
R e c u r s i o n 5 - 3 1

Recursive Definition of Factorial 5-31
Factorial Command and Function 5-33

V I 1

6 INTERACTIVE I/O

The Minibuffer 6-2
How to Write to the Minibuffer 6-2
Prompting 6-3
Read Functions 6-4
Conversion Routines 6-5

Writing Over the Text Area 6-6
Debugging PEEL Programs 6-7

7 MANIPULATING TEXT IN BUFFERS

Characters 7-2
Whitespace 7-2
Words 7-4
Lines 7-4
Clauses 7-5
Sentences 7-6
Regions 7-6
Cursors 7-7

Copying Text 7-11
Deleting Text From a Buffer 7-12
Inserting Text Into the Buffer 7-13
Working With Text Contained

in Variables 7-13

8 MODES

Modes Defined 8-2
Binding Mode Functions and

Commands 8-4
9 INFORMATION COMMANDS

BUFFER_INFO 9-1
DISPATCH_INPO 9-4
FILE_INFO 9-5
WINDCW_INPO 9-6
Other Information Commands 9-8

APPENDIXES

A EMACS FUNCTIONS AND COMMANDS A-1
B COMMAND CROSS-REFERENCE LIST B-l

INDEX X-l

V l l l

About
This Book

This book shows you how to write commands and functions that extend the
capabilities of the EMACS editor. If you are not familiar with the
concept of a programmable editor, you may not appreciate the full
capabilities that you now have at your fingertips. You no longer have
just a text editor. Instead, you now have a tool for creating editors.
This means that you can restructure the way EMACS looks, what it does,
and how it acts on text.

If you are not familiar with the EMACS editor, you should read the
EMACS Reference Guide (IDR5026) and its three update packages
(PTU2600-105, PTU2600-107, and UPD5026-31A) before reading this book.
This book assumes familiarity with the EMACS commands discussed in the
EMACS Reference Guide. If you are not familiar with these commands,
much of the information presented here will not make sense.

The language used to write EMACS commands and functions is called the
Prime EMACS Extension Language (PEEL). Although PEEL is designed to
operate on textual information, it contains everything necessary to
write complete functions. Because these functions are only usable
within EMACS, they serve to extend the capabilites of the editor.

As EMACS exists, it has many commands. Why is there a need to write
more commands? Even though EMACS has most of the commands you might
want, there are many situations where you want to perform actions based
on particular information in the text. In other cases, you may want to
adapt commands to some special organization in a text file. In
addition, you can use the extension language to put together commands
that talk to the PRIMOS® operating system.

i x

The best way to learn how PEEL works is to examine real programs that
do real operations. Consequently, the majority of the examples in this
book are taken from the library functions in EMACS* >EXTENSIONS. In
addition, you should look at the code in these libraries to see how the
elements of a PEEL program fit together. Another important purpose of
reading the programs in EMACS* is that you will gain an appreciation of
the kinds of actions that must be performed in a string processing
program.

This book assumes that you are an experienced programmer. While PEEL
concepts are explained, no attempt is made to explain programming. If
you know the LISP language, you already know the structure of PEEL.
Pli/I and PASCAL programmers will also be familiar with many of the
concepts presented here.

Even though PEEL is a relatively new and unfamiliar language,
experience has shown that PEEL rivals BASIC in its simplicity.

HOW TO USE THIS BOOK

The book is divided into two parts. The first part, Chapters 1 through
9, is a discussion of how to write extensions. The second part,
Appendixes A and B, is a reference list of PEEL statements.

Chapters 1 and 2 introduce the PEEL language and discuss PEEL's
strengths and limitations, the EMACS environment, compilation, and the
binding of functions into the environment. The last topic is presented
in the context of keyboard macros, which were discussed in the EMACS
Reference Guide.

Chapters 3 and 4 discuss arithmetic functions, such as multiplication
and division, and control statements, such as if, do, and select.

Chapter 5 puts together the information presented in Chapters 1 through
4 so that you can begin creating functions and commands. Other topics
discussed are the command environment, data typing, transferring
information between programs, and recursion.

Chapters 6 and 7 discuss the two forms of I/O available in EMACS: file
(buffer) I/O and interactive I/O. Chapter 6 discusses how a program
communicates to a user and how a user communicates back to a function.
Chapter 7 looks at how information is altered, removed, and modified in
a buffer. Of particular importance is the second half of Chapter 7,
which explains cursors.

Chapters 8 and 9 discuss two advanced topics. Chapter 8 examines
modes, which are a way of changing command definitions on a temporary
basis. Chapter 9 looks at the information that EMACS keeps track of
while it is executing.

Appendix A is an alphabetical listing of all built-in functions and
commands of EMACS, as well as the majority of functions and commands
contained in the libraries in EMACS*>EXTENSIONS.

Appendix B is a cross-reference listing of the information presented in
Appendix A. Commands and functions are grouped by what they do in
order to help you find the information that you need.

x i

Introduction

The EMACS text editor provides a large and powerful command structure
that can meet the needs of a wide range of users. Beginners can
quickly learn a subset of commands that will help them perform most of
the tasks needed to edit a file. More experienced users can draw upon
the entire command vocabulary and use the full power of EMACS.

Whenever you use a text editor, you are performing the actions that
someone thought would be appropriate for what you have to do.
Consequently, the editor may lack features that would make editing
sessions easier for you. In addition, you can only manipulate the
kinds of things the designer thought should be manipulated and only in
the way the designer intended. As discussed in the EMACS Reference
Guide, the EMACS editor also appears to have these limitations.
However, the information contained in this book shows you how to
customize EMACS so that it meets your expectations and your needs.

FINDING INFORMATION

As you will see, the programming language used to write new commands is
very rich. Because the programming language, PEEL, has been designed
to manipulate textual information, its statements are tailored to the
kinds of things found in text. For example, statements exist for
manipulating words, sentences, and paragraphs.

1 - 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Because PEEL is a large language, it usually offers a variety of ways
to do the same thing. (All the PEEL statements are listed in Appendix
A.) However, you never have to guess what the best way to program an
operation is. EMACS has three commands to help you find the
information you need.

Command Command Name Function

{CTRL-_} A Apropos Lists all commands related to an
operation.

{CTRL-_J C Explain Lists what a keystroke does.

{CTRL-_J D Describe Lists textual information about
commands and PEEL statements.

Let's look at how you would use these commands.

Example 1: Apropos

Suppose you want to move the cursor forward and you want to see
which commands perform forward movement. You would type {CTRL-_J A
followed by the word "forward". EMACS will list all commands that
have the word "forward" in it.

Example 2: Explain

Suppose you want to write a command that, among other things, moves
point (the current cursor) forward one character. As you know, the
keystroke {CTRL-F} moves point forward. Typing {CTRL-_} C, then
typing {CTRL-F} tells you that the internal name for that keystroke
is forward char.

Example 3: Describe

Suppose that after EMACS lists a command, you want to obtain more
information. If you type {CTRL-_J D followed by the command name,
EMACS prints the information you need.

The describe command, {CTRL-_} D, also lists the built-in functions of
EMACS. For example, it lists the forward_search function, which is not
available at command level. As you learn to program in PEEL you will
find that describe is one of your best helpers. To learn more about
describe, type ? while in describe.

S e c o n d E d i t i o n 1 - 2

INTRODUCTION

TOE RELATIONSHIP BETWEEN PEEL, EMACS, AND YOUR COMMANDS

In a traditional programming environment, the end result is a unit of
code that can be invoked from PRIMOS. However, the commands that you
write in PEEL can only be executed within EMACS. This is because all
the commands you write are dependent on PEEL statements that only exist
within the EMACS environment. Also, EMACS is an interpreter, not a
comp i le r. Consequen t l y, i t s code i s never des igned to be
se l f -conta ined.

The PEEL statements are, in many respects, similar to statements in
other languages. For example, here is the statement for moving forward
a character:

(forward_char)

Notice the parentheses and the statement text. The way PEEL uses
parentheses is identical to the way LISP uses them. If you have not
programmed in LISP, you may find that entering parentheses before and
after statements is awkward. For example, the following is PEEL's
equivalent of a do loop:

(do_n_times count
(forward_char))

Notice that this statement ends with two parentheses. (This example
moves the current cursor forward the number of positions indicated by
count.) Thus you can understand why, as statements become nested
within statements, it becomes easy to lose track of which opening
parenthesis belongs to which closing parenthesis.

EMACS can help you out of this difficulty. Type the following command:

{ESC} X lisp_on

This invokes the LISP programming mode. The most important command in
LISP mode redefines the closing parenthesis so that EMACS momentarily
jumps to the corresponding open parenthesis. This shows you if you
have entered parentheses correctly.

Oie way to understand how EMACS and the commands you write relate is to
think of EMACS as if it were the main module in a FORTRAN or Pl/I
program. Then all the functions and commands that you write can be
thought of as being subroutines of this EMACS main module.

After you write a command and bring it into the EMACS environment, as
is discussed in the next chapter, that command is indistinguishable
from the fundamental commands supplied with EMACS.

1 - 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

HOW TO FIND OUT WHAT A STATEMENT DOES

Whenever you are in EMACS, you have the full capability of PEEL
available at all times. As is described in Chapter 2, you can tell
EMACS to interpret a command or file. The contents of the file or the
command are then available. In addition, you can have EMACS directly
execute PEEL statements at any time, causing the specified action to be
performed immediately. You can use this fact to help see what a
function does. To invoke the programming language, type {ESC}{ESC}.
EMACS will respond with the prompt PL: (for programming language).
You can now type a statement (or series of statements). When you type
a carriage return, EMACS executes the PEEL statements.

As an example, suppose you want to write a command that, in part, moves
the current cursor, or point, back to a previous space. EMACS contains
the statement "skip_back_to_white". The question you might have is
where does this leave point? Is it left so that the white space is
immediately after point or before point? To find out, type {ESC}{ESC}
while in the middle of a file, then type:

(skip_back_to_white)

In this way, if you are unsure about something, you can find out.

LISP

PEEL not only shares the format of LISP, it contains many elements of
the LISP language. However, it is not a fully developed LISP language.
For the most part PEEL merely contains the basic primitives necessary
for creating, examining, and taking apart lists. (These statements are
listed in Appendix B.) If you do not know LISP, you will not be able
to use these functions. Fortunately, for the most part you can get by
very easily without these functions. For example, more than 95% of all
functions in the EMACS libraries make no use of these basic list
statements.

If you have heard anything about LISP, you know that it is a language
designed for processing lists. Because most programmers are more
familiar with arrays, PEEL lets you use arrays in the same manner as
traditional prograiraTung languages. Thus, with PEEL, there is little
need to use lists if you do not want to.

In other words, you can write all the extensions you want without
knowing anything about LISP.

If you want to learn more about LISP, read:

Winston, Patrick Henry and Horn, Berthold Klaus Paul. LISP,
second edition. Reading, Mass.: Addison-Wesley Publishing
Company, 1981, 1984.

S e c o n d E d i t i o n 1 - 4

Creating,
Transforming, and

Binding Extensions

This chapter discusses the following:

• Creating a macro

• Converting a macro into a PEEL source code extension

• Using PEEL source code

- Saving source code in a file

- Creating PEEL source libraries

• Binding an extension to a key

- Key path conventions

- Control characters in key paths

- Letters in a key path

- Key binding within local buffer only

- Adding key binding to a PEEL source library

• EMACS fast load (EFASL) files

- File naming conventions

• Loading extensions (library management)

2 - 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

The easiest way to create an extension, aside from having someone else
write it for you, is to have EMACS write it. The extensions that EMACS
can write are the keyboard macros discussed in the EMACS Reference
Guide. This chapter reviews the steps involved in creating a keyboard
macro, demonstrates the steps involved in transforming a keyboard macro
into an extension, points out some of the limitations of this method,
and shows how an extension is bound into EMACS. This binding procedure
is the same one you use when writing your own extensions.

Note

The section titled LOADING EXTENSIONS: LIBRARY MANAGEMENT in
this chapter tells you how to create and manage libraries of
extensions. It also explains the best way to install new
commands.

CREATING A KEYBOARD MACRO

Let's begin by looking at the simplest way to use EMACS's macro
capability. Suppose, for example, you want to perform the same set of
keystrokes over and over. You can tell EMACS to save that set of
keystrokes and then have them executed again and again by means of a
single EMACS command.

Suppose you wish to move the cursor to the right three positions, then
insert the period character (.) into the text buffer. You would type
the following:

{CTRL-F} {CTRL-F} {CTRL-F} .

Now suppose you wish to do this over and over again. You tell EMACS to
"learn" this sequence of keystrokes and then to repeat the sequence
whenever you desire.

To tell EMACS to "learn" a sequence of keystrokes, type the following:

{CTRL-X} (

This command tells EMACS to begin learning. From that point on, any
keystrokes you type will be remembered for future use. EMACS will
continue remembering keystrokes until you type the following:

{CTRL-X})

S e c o n d E d i t i o n 2 - 2

CREATING, TRANSFORMING, AND BINDING EXTENSIONS

This command tells EMACS that the keystroke sequence definition is
completed.

To combine the example above (moving the cursor right three positions
and inserting a dot) with this method of remembering sequences of
keystrokes, you would type the following:

{CTRL-X} ({CTRL-F} {CTRL-F} {CTRL-F} . {CTRL-X})

The four keystrokes between the {CTRL-X} (and {CTRL-X}) are saved,
ready for reexecution whenever you request it.

The way you request it is by typing the following:

{CTRL-X} E

This command tells EMACS to reexecute whatever keystrokes were saved by
the commands {CTRL-X} (... {CTRL-X}).

You can also supply a numeric argument in order to specify repeated
execution of the saved keystrokes. For example:

{ESC} 5 {CTRL-X} E

This command specifies that the saved keystrokes are to be executed
five times.

Note that this method of saving and reexecuting keystrokes works with
only one set of keystrokes at a time. If you use {CTRL-X} (and
{CTRL-X}) again, the new keystroke definition will overwrite the
previous one.

If you are in the habit of using fill mode, you should turn that mode
off in any buffer in which you are creating macros, so that words at
the end of one line will not spill over into the next line. Therefore,
before creating a macro, type the following:

{ESC} X fill_off

CONVERTING A MACRO INTO A PEEL SOURCE CODE EXTENSION

The method of defining a macro we have just described can be used to
define only one macro at a time; if you define a new macro, you erase
the definition of the old macro.

2 - 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Obviously, you need a method for defining and saving many macro
definitions. To do this, you must save the macro definition in terms
of PEEL source code. EMACS provides a simple method for converting a
keystroke sequence macro into PEEL source code. However, before using
this method, you must create a new EMACS buffer into which you will
place the source code. The easiest way to do this is to create a new
file using the following command:

{CTRL-X} {CTRL-F}

This command prompts you for the name of a file. You should choose a
filename of the form "name.EM". As we will see, the ".EM" suffix is
the standard one for PEEL source code files. (Of course, you can
create a new buffer without creating a new file. To do that, use the
{CTRL-X} B command.)

Once you are within the buffer for the file you are creating, you are
ready to load into that buffer the source code for the keystroke
sequence macro you have created. To do so, type the following command:

{ESC} X expandjmacro

EMACS prompts you for the name of the macro, converts the macro into
PEEL source code, and places the source code in the new buffer. For
the name of the macro, you should choose a name that will be easy to
remember, since you will be using that name in the future when you wish
to invoke the macro.

For Standard User Interface (SUI), you may press the Command key
instead of using {ESC} X.

Suppose you have used the keystroke sequence described previously, and
have given it the name "tx". Then the following source code will
appear in the buffer:

(defcom tx
(do_n_times (numeric_argument 1)

(forward_char)
(forward_char)
(forward_char)
(self_insert \.)

))

S e c o n d E d i t i o n 2 - 4

CREATING, TRANSFORMING, AND BUYING EXTENSIONS

While it is not yet necessary for you to understand this source code,
the following points will give you the idea of what it is doing:

• The basic format is:

(defcom name (action))

defcom is the keyword which defines a new command; name is the
name of the command you are defining (tx in the example above);
and action is the action to be performed when the command is
invoked.

• The first line of the action portion of the command is:

(do_n_times (numeric_argument 1)

Notes

1. This line contains an unmatched left parenthesis — the
matching right parenthesis is on the last line of the
PEEL source code.

2. As we shall see in a later chapter, there is a way to
supply a numeric argument when invoking the tx command
you have just defined. (Recall that the discussion of
the {CTRL-X} E command, earlier in this chapter, shows
how to supply a numeric argument to specify repeated
execution.) The line above uses that numeric argument,
if supplied, to control the number of times that the
specified action will be performed.

The line above has two parts. The first, "do_n_times", defines
a PEEL loop. The action following it is to be performed the
number of times specified by the second part of the line,
"(numeric_argument 1)".

This is a PEEL function that has the value of the numeric
argument (if any) specified with the tx command when it is
invoked. Thus, if you invoke tx with no argument, the action
you have specified is executed exactly once.

• Each of the next three lines contains the following code:

(forward_char)

2 - 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

This is a PEEL function, corresponding to the keystroke
{CTRL-F}, which moves the current cursor (point) ahead one
character in your buffer.

• Next comes the line:

(self_insert \ .)

This function inserts a period at the current point. It is the
PEEL equivalent of typing a period at your keyboard to insert
that character into your buffer.

• The last line contains two right parentheses. These parentheses
match the two unmatched left parentheses in the first two lines
of the source code.

The meaning of the PEEL source code will be explained in greater detail
in later sections. For now, you should be satisfied with the gist of
how the source code works.

Once you have inserted the source code into the buffer, you should
write the buffer out to the file you specified. You do this by means
of the following command sequence:

{CTRL-X} {CTRL-S}

This command sequence, which corresponds to SAVE FILE in the Standard
User Interface, saves the buffer in a file defined by the current
pathname.

USING PEEL SOURCE CODE

If you have been following our example, you have now done the
fo l low ing :

1. Used {CTRL-X} (and {CTRL-X}) to define a keystroke sequence

2. Used {CTRL-X} {CTRL-F} to create a new buffer and file

3. Used {ESC} X expandjmacro to convert the macro you have defined
into PEEL source code

4. Used {CTRL-X} {CTRL-S} to save the PEEL source code in the file

However, none of these steps make the new tx command available to you.
Oi course, until you define a new macro using {CTRL-X} (and {CTRL-X}),
you can continue to use {CTRL-X} E to execute the macro again.

S e c o n d E d i t i o n 2 - 6

CREATING, TRANSFORMING, AND BINDING EXTENSIONS

However, we are talking about a way to make the command known to EMACS
so that you don't have to worry about overwriting it.

Making the New Command Available to EMACS

The method requires two steps. First, type the following:

{ESC} X pi

This command tells EMACS to use the PEEL source code in the current
buffer to make any command definitions a part of EMACS for the current
EMACS session. (The letters "pi" stand for "programming language".)
Thus, after executing this command, tx is available as an EMACS command
for the current EMACS session.

Then, to use the command, just type:

{ESC} X tx

For the Standard User Interface, type Command tx.

Now anytime you use this command during your editing session, EMACS
will move the cursor right three characters and insert a period.

Saving Source Code in a File

The pi command we have just been discussing causes EMACS to compile and
execute the PEEL source code in your current buffer. In the example
above, the current buffer contains PEEL source code for a defcom, or
command definition, of the command named tx. Therefore, compiling and
executing this source code makes the tx command available to EMACS.
However, the command is lost when you exit EMACS.

If you plan to use the same commands in session after session, you
should save the source code in a file, and then compile and execute
that file at the beginning of each session. To save the code, use
{CTRL-X} {CTRL-S} as discussed above, or use {CTRL-X} {CTRL-W} to
create a new file.

To compile and execute the source code in a file, you use the following
command:

{ESC} X load_pl_source

2 - 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

After you type this command, EMACS prompts you for a pathname of a PL
source file. After you type the pathname, EMACS finds the file, then
compiles and executes it. At that point, your saved command is
available.

It may interest you to know that the command we have just discussed
loads the source code into a buffer named ".pi". If you use the
list_buffers command, {CTRL-X} {CTRL-B}, you will see this buffer
l i s ted .

Creating PEEL Source Libraries

If desired, you may create a file containing the PEEL source code for
many commands similar to the ones illustrated above. Each time you use
the expandjnacro command, EMACS inserts your latest command definition
into the current buffer. Thus, you can insert as many of these
commands into the same buffer as you wish, and store them all in the
same file.

If you start your next EMACS session with the load_pl_source command,
all the commands you have defined in the source file you specify will
be available to you in that session.

BINDING AN EXTENSION TO A KEY

If you have been trying out the example so far, then you have created a
source file defining one or more new command names. To invoke one of
these commands, you must use {ESC} X followed by the name of the
command.

Frequently, it is more convenient if you redefine some of your keyboard
command keys to correspond to the commands you have defined. For
example, suppose you want the backslash key (\) to correspond to the tx
command. To do so, type the following:

{ESC} X setj?ermanent_key

EMACS prompts you for a key path. In reply you press the backslash
key, as follows:

Key Path: \

S e c o n d E d i t i o n 2 - 8

CREATING, TRANSFORMING, AND BINDING EXTENSIONS

Next, EMACS prompts you for the command name. In reply, you type the
command name tx, as follows:

Command Name: tx

This sequence of commands causes EMACS to "bind" the backslash key to
the tx command. Thus, from this point on, whenever you press the
backslash key, EMACS automatically executes the tx command.

Note

In binding a key to a command, you are doing something that is
fairly common within EMACS. For example, the {CTRL-F} key is
automatically bound to the forward_char command whenever you
invoke EMACS. That is why {CTRL-F} moves the cursor one
character forward. However, you can almost always overwrite an
existing binding by binding the same key sequence to a new
function.

Key Path Conventions

The last example bound a single key, \, to the tx command. You also
may bind entire strings of keys to given commands. This allows you to
put keystrokes together in a variety of ways to define as many commands
as you wish.

For example, suppose you invoked the set_permanent_key command as
described above, with the same command name, tx, but specified the key
path as follows:

Key Path: #%

You would be specifying that these two keystrokes together, #%, are
needed to invoke the tx command. Similarly, you could bind such
keystroke combinations as #+ or #$ to other commands that you have
defined.

Any such string of keystrokes bound to a command is called a key path.
You may have up to and including 10 keystrokes in a key path. Although
any sequence of keystrokes may be used, a sequence beginning with
control or escape characters is recommended to avoid losing the normal
meaning of other characters.

2 - 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Caution

In the examples above it would not be correct to bind the pound
sign (#) alone to a function, because that would interfere with
its use in the key path pairs #%, #+ and #$. Similarly, the
bindings of the prefix keys {ESC} and {CTRL-X} should never be
changed, because that would prevent many of the standard EMACS
a>mmands from working.

Control Characters in Key Paths

To specify control characters in a key path, you must use special
symbols. (Note that {ESC} is a control character, equivalent to
{CTRL-[}.) These special symbols are as follows:

" x f o r { C T R L - x }
~ [f o r { E S C }

for ~
~cx for {CTRL-x}

The first and last lines of this table are for specifying the control
code corresponding to any letter on the keyboard. For example, the
character {CTRL-A} may be specified either as ~A or ~cA. (A few
terminals do not have a ~ symbol. Most of these terminals have an up
arrow key U) instead.)

Caution

Many terminals have both the ~ key and the up arrow key. If
both are present, be careful to distinguish between these two
keys.

For further information on specifying control characters, see the
Escape Sequences entry in Appendix A. See also the c_uotejc»mmand
function in Appendix A. This function helps you bind a command to a
function key without knowing the keypath of the function key. However,
you must still change the resulting sequence in your code to reflect
the conventions in the preceding table.

S e c o n d E d i t i o n 2 - 1 0

CREATING, TRANSFORMING, AND BINDING EXTENSIONS

Letter in a Key Path

When a key path contains a letter, EMACS distinguishes between
uppercase and lowercase letters. For example, the key path "[A creates
a binding to {ESC} A. It does not create a binding to {ESC} a. If
you wish to create both bindings, you must invoke the set_permanent_key
command twice, specifying the key path "[A the first time and ~[a the
second time.

Key Binding Within Local Buffer Only

EMACS permits you to define a key binding that is valid only within the
buffer that was active when you invoked the key binding command. To
perform this kind of binding, use the set_key command rather than the
set_permanent_key command. Except for that change, everything we have
discussed is the same.

The set_key command is generally not very useful. In most cases, you
should use set_permanent_key.

Adding Key Binding to a PEEL Source Library

Previously, you learned how to create a source file containing PEEL
command definitions, and then how to load, compile, and execute that
command at the beginning of each EMACS session so that the commands
defined become available during your session. You now must learn how
to add to that source file so that your key bindings also are
automatically defined.

To bind a key path to a command, insert the following command sequence
at the end of your PEEL source file:

(set_permanent_key "key path" "command")

You may add as many of these lines as you need to bind different key
paths to different commands.

For example, to specify that the key path {ESC} A is to be bound to the
command tx, you would type the following at the end of your PEEL source
fi l e :

(set_permanent_key ""[A" "tx")

Jn future EMACS sessions, when you use the load_pl_source command to
load your PEEL source, the keystroke bindings you have specified will
be automatically defined and available for the sessions.

2 - 1 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Remember that you may use the set_key cc>mmand as well as the
set_permanent_key command in your source file. However, set_key
commands normally would be completely useless because the keystroke
bindings would be available only in the .pi buffer containing the
source file.

EMACS FAST LOAD (EFASL) FILES

We have been discussing how to create a source file of PEEL commands
and how to load that source file when you start a new EMACS session.
Now we are going to take that process one step further.

If you had a large source library containing many command definitions,
it would take a long time to load and compile that source file each
time you began an EMACS session. Therefore, EMACS provides a way for
you to save that file in a compressed form, so that it can be loaded
much more quickly when you begin a new session.

The compressed command file is called an EMACS fast load file, and it
always has a .EFASL suffix.

Suppose that your PEEL source file has the name MYPEEL.EM. (As stated
earlier in this chapter, it is standard practice that a PEEL source
file should have a .EM suffix. You will see why this is important in a
few paragraphs.)

First, you should load the source file into an EMACS buffer with the
find_file command, as follows:

{CTRL-X} {CTRL-F} MYPEEL.EM

Notice that this command does not compile and execute the source file;
it simply loads it into a buffer. Of course, you could now compile and
execute it with the {ESC} X pi command. Instead we are going to
compress and save the source file by typing the following command:

{ESC} X dump_file

EMACS compresses the source file and stores the result into the file
MYPEEL.EFASL.

Although EMACS has now compressed the source file, the commands defined
in the file are still not available to EMACS. To make them available,
you must load the partially compiled file with the following command:

{ESC} X load_compiled

S e c o n d E d i t i o n 2 - 1 2

CREATING, TRANSFORMING, AND BINDING EXTENSIONS

This command prompts you for a file name. Respond by typing MYPEEL, so
that the minibuffer at the bottom of your screen reads as follows:

Fasdump file name: MYPEEL

(It is an error to type MYPEEL.EFASL.) If the file is not located in
your current directory, you can type an entire path name, without the
.EFASL suffix.

The dump_file command, which compresses a source file and dumps the
result to a file, performs what is known as a fasdump operation, while
the load_compiled command performs a fasload operation.

File Naming Conventions

When you use the dump_file command, the name of the file created by
EMACS depends upon the name of your source file in your current buffer
and whether that source file name has a .EM suffix.

• If the source file has a .EM suffix, then EMACS simply removes
that suffix and replaces it with the .EFASL suffix. For
example, as we have just seen, if the source file name is
MYPEEL.EM, then the dump file name is MYPEEL.EFASL.

• If the source file name does not have a .EM suffix, EMACS simply
adds the .EFASL suffix. For example, if the source file name is
MYPEEL, then the dump file name would be MYPEEL.EFASL.

Note that in all the commands that we have discussed, you never
actually type the .EFASL suffix. In all cases, EMACS automatically
supplies it.

LOADING EXTENSIONS: LIBRARY MANAGEMENT

Once you have created a fasload file, you can cause EMACS to load that
file automatically at the beginning of each EMACS session. For
example, to load the file MYPEEL.EFASL, you would type the following:

EMACS filename -ulib MYPEEL

If you prefer, you can shorten this command line by defining a new
abbreviation using the PRIMOS ABBREV command, as follows:

ABBREV -AC MYEMACS EMACS %1% -ULIB MYPEEL

2 - 1 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Once you have created the abbreviation, you can invoke EMACS and cause
it to load the fasload file simply by typing the following:

MYEMACS [filename]

The ABBREV feature is explained in the Prime User's Guide.

To load several library files, you can create a top level library file
which contains commands to load all the other library files. For
example, suppose your PEEL souroe for your top level library file is
the following:

(load_oompiled "file 1")
(load_compiled "file 2")
(load_compiled "file 3")

Then when you load the top level library file, it will in turn load
file 1, file 2, and file 3.

SUMMARY OF STEPS FOR CREATING EXTENSIONS

1. Create PEEL source code by:

• Expanding a macro, as explained in this chapter

• Writing PEEL source code directly, as explained in the
rest of this book

Be sure that EMACS is in no-fill mode. If necessary, enter
{ESC} X filljoff.

To associate PEEL commands with keys, add the set_permanent_key
command at the end of the code for each command.

To use the commands in the same EMACS session, type {ESC} X pi
once and then, for each command, {ESC} X command jiame.

2. Save the PEEL code in either uncompiled or compiled format.

• To save as uncompiled PEEL source code, use a write_file
or save_file command in a file with a name of your
choice.

S e c o n d E d i t i o n 2 - 1 4

CREATING, TRANSFORMING, AND BINDING EXTENSIONS

• To save as compiled PEEL code (the preferred way), use
{ESC} X dump_file to save a file of compiled PEEL code.
Before you use dump_file, the name of your buffer or
file of source code should end in .EM, so that dump_file
can create a corresponding filename with an .EFASL
(EMACS fastload) suffix.

3. For your next EMACS session, load the code in one of the
following ways:

• If the code is uncompiled source code, use {ESC} X
load_pl_source.

• If the code is compiled, do a "fast load" with either of
the following methods:

- Use {ESC} X load_compiled after you invoke EMACS
or

- Use -ulib filename to load the code when you
invoke EMACS or

In either case, use only the root of the filename
without the .EFASL suffix.

4. To invoke any command you have loaded, use {ESC} X
command jiame. If the set_permanent_key command is included in
the source code, you can invoke the associated command by
pressing the appropriate key or combination of keys.

WHAT IS NEXT

In this chapter, you learned how to make customized EMACS commands from
macros. You can save these personalized commands and reload them at
every EMACS session.

The rest of this book shows you how to create your own commands
directly in PEEL. However, the methods of saving and reloading these
commands are the same ones you learned in this chapter.

2 - 1 5 S e c o n d E d i t i o n

Elementary PEEL
Programming

This chapter discusses the following:

• PEEL as a programming language

• Elements of list processing

• Assignments

• Arithmetic operations

• Arrays

• Functions that manipulate lists

PEEL AS A PROGRAMMING LANGUAGE

The preceding chapters have introduced you to some of the simpler ways
you can use PEEL. In this chapter, we are going to discuss PEEL as a
programming language, show you how to create and execute programs in
that language, and then how to compile and execute those programs.

Also in this chapter we will look at the mathematical operations that
can be performed using PEEL. It may surprise you that PEEL has
arithmetic or mathematical operations, because PEEL is an extension to
an editor, and might be expected to be strictly a string processing
language. However, as with any programming language, PEEL programs use

3 - 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

counters for such things as loops and comparisons, and arithmetic
operations are needed for these.

You should not think of PEEL either as a string processing language or
a numbers processing language, although it does process both numbers
and strings. Rather, you should classify PEEL as a list processing
language. In fact, PEEL is based on LISP, the list processing language
invented by John McCarthy in the late 1950's. LISP has been used for
many years to program artificial intelligence applications. It is used
in EMACS as the extension language, PEEL, which enables EMACS to become
a very intelligent editor indeed.

ELEMENTS OF LIST PROCESSING

This section discusses the following:

• Atoms

• Integer and string atoms

• Lists

• Nested lists

• Symbolic expressions (S-expressions) and forms

• How to execute PEEL programs

• Output from PEEL programs

• The value of an S-expression

• Evaluating S-expressions: effects and side-effects

Atoms

The fundamental objects in PEEL are atoms. You specify an atom by
typing its name, which normally consists of letters, digits, or any
printing character except a blank, a left parenthisis, or a right
parenthesis. Often, the name of an atom is an ordinary word, such as
"counter".

Integer and String Atoms

As we shall see, an atom can have as a value any of a wide variety of
data types, including numeric or string values. You specify numeric or
string atoms directly by typing the value of the atom.

S e c o n d E d i t i o n 3 - 2

ELEMENTARY PEEL PROGRAMMING

For example, you may specify an integer atom by typing one or more
decimal integers, optionally preceded by a plus sign (+) or a minus
sign (-). The following specify integer atoms:

234
+234
-234

You may specify a string atom by typing any printable ASQI characters
enclosed in double quotation marks. The following specify string
atoms:

"a b c"
"This is a sentence."
"a (b"

L i s t s

A list is a group of atoms enclosed in parentheses. For example:

(forward_char)

This is a list containing the single atom forward_char.

Another example is:

(setq x 5)

This is a list containing three atoms: setq, x, and the integer atom
5.

It is possible for a list to contain no atoms whatsoever. Such a list
is called the null list, and is written as follows:

0

Each of the atoms in a list is said to be a member of the list. For
example:

(setq x 5)

This list has three members: setq, x, and 5.

3 - 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Nested Lists

It is of fundamental importance that a member of a list can be another
list. This expands our definition of list, since now a list can
contain more than just atoms. Consider the following example:

(setq x (+ 2 3))

This example illustrates a list as a member of another list. The outer
list contains three members, but only two of these members, setq and x,
are atoms. The third member is the inner list (+23). The inner
list, for its part, contains three atoms: +, 2, and 3.

Symbolic Expressions (S-expressions) and Forms
A symbolic expression, abbreviated s-expression, is either an atom or a
l i s t .
A form consists of one or more s-expressions.

When you write the source code for a PEEL program, you are really
writing a form, consisting of s-expressions.

EVALUATION OF S-EXPRESSIONS

Now let us look at some actual examples of the PEEL programming
language in action. If you have a terminal available to you, you can
try out these examples as you read.

How to Execute PEEL Programs

Let us review the major ways we have already learned to execute PEEL
programs.

Suppose, for example, you are editing in EMACS, and you have text
displayed on your screen. If in the middle of your edit you type {ESC}
{ESC} (that is, you press the "escape" key twice), at the bottom of
your screen, in the minibuffer, EMACS displays the prompt PL: to
indicate that it is ready to accept a PEEL statement.

If you now type (forward_char), what you have typed is an s-expression,
a list containing the single atom forward_char. If you then press
RE7TURN, EMACS automatically executes what you have typed as a PEEL
statement. You see the result on your screen: the cursor, indicating
the location of the EMACS point, will have moved to the next character
in the buffer.

S e c o n d E d i t i o n 3 - 4

ELEMENTARY PEEL PROGRAMMING

This is the simplest way to execute a PEEL program, but obviously you
can use it for only the very shortest PEEL programs, usually programs
consisting of a single short s-expression.

To execute a more complex PEEL program, you can type the source program
into an EMACS buffer and then tell EMACS to execute the contents of
that buffer as a PEEL program. Following is a simple example of how
you do that.

1. Start up a new EMACS buffer by typing the following EMACS
command:

{CTRL-X} B

2. Type the following text into the buffer:

(forward_char)

3. Move the cursor in your buffer so that it is on the character
ff", and type the EMACS command:"h

{ESC} X pi

This command tells EMACS to interpret everything in your current buffer
as a PEEL source program, and to compile and execute it. After EMACS
completes execution, you will see the result immediately on your
screen: the cursor will have moved forward one character, to the
letter "o" following "f".

In the examples that follow, if the example is simple, you can use
either method described above to execute the program on your terminal.
However, as soon as the example gets a little more complicated, be sure
to use the second method, typing the source into a regular text buffer
and then executing the contents of the buffer by means of {ESC} X pi.

Output From PEEL Programs

Following is a PEEL statement that can be executed by either of the
methods described above.

(+ 2 3)

3 - 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

As we will see in the next few pages, this statement directs PEEL to
add the values of 2 and 3. Because the statement does not tell PEEL
what to do with the sum, PEEL throws the sum away.

To print out the value of this s-expression, use the print function, as
follows:

(print (+2 3))

This statement tells PEEL to compute the sum of 2 and 3 and print out
the result. When you execute this statement, PEEL prints the sum at
the top line of your edit buffer, overwriting whatever was already
displayed there. It is important to understand that the sum is not
actually stored into the text buffer; rather, the sum is simply
displayed on your screen. If you now type {CTRL-G}, EMACS refreshes
the screen, the sum that you just computed is removed, and the original
text from the text buffer is again displayed.

The Value of an S-Expression

Every s-expression, whether an atom or a list, has a value. Whenever
you execute a PEEL program, EMACS determines the value of each
s-expression as it goes along.

For example, consider the example we used above:

(+ 2 3)

As stated above, the value of this s-expression is 5, which PEEL
computes by adding together 2 and 3.

Let us take a closer look at how PEEL evaluates this expression,
starting with the two numeric atoms 2 and 3. Since each of these is a
numeric atom, it automatically has a value. The values, of course, are
2 and 3, respectively. When PEEL evaluates the s-expression
illustrated above, it evaluates these two atoms first, before doing
anything else.

Functions in S-Expressions: PEEL does not evaluate the + atom in the
same way it evaluates the other two atoms. The difference is that, by
convention, the first atom in a list is always considered to be a
function name. An atom appearing at the beginning of a list is a
function that requires arguments before it can be evaluated, while
atoms appearing later in the list are evaluated intrinsically.

In the example we are considering, + is an atom which, when used as the
first atom in a list, is a function that adds together its arguments.

S e c o n d E d i t i o n 3 - 6

ELEMENTARY PEEL PROGRAMMING

The format of a function reference in PEEL is as follows:

(functionname argl arg2 ...)

That is, the function name appears first in the list and the arguments
are the other members of the list.

The * atom is similar to the + atom, except that it multiplies its
arguments rather than adding them. For example:

(* 2 3)

This s-expression uses the * function and returns the value 6.

There can be as many as eight arguments. As we shall see, most
functions require a specific number of arguments, but, as it happens, +
and * are functions that can have a variable number of arguments. For
example:

(+ 1 2 3 4 5)

This is a function reference with + as the function name and 1, 2, 3, 4
and 5 as five separate arguments. PEEL evaluates this function by
adding together the values of the five arguments. The result is 15.
To print the result, you would use the following statement:

(p r i n t (+ 1 2 3 4 5))

Functions With No Arguments: Some functions take no arguments. It may
surprise you to know that we have already seen several examples of
this. Consider the following:

(forward_char)

This is a list containing a single atom, forward_char. When PEEL
evaluates this list, it considers the first (and only) atom in the
list, forward_char, to be a function name. Since there are no other
members of the list, PEEL invokes the forward_char function with no
arguments. PEEL responds by moving the point in your current buffer
forward one position. On the other hand, you can invoke this same
function with a numeric argument, as follows:

(forward_char 5)

3 - 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

In this case, PEEL invokes the same function with a single numeric
argument, whose value is 5. The result is that EMACS moves the point
in your current buffer forward five characters.

If you have been following this discussion, you may be puzzled at this
point, because we have been discussing forwardjchar as a function
without telling you what the value of the function is. We will explain
this later, but for now just think of forward_char as a function that
does something, but does not compute a value that you care about.

Functions With Expressions as Arguments: The arguments of a function
need not be atoms. Consider the following example:

(+2 (* 3 4))

Here we see the function +, again with two arguments. The first
argument is atom 2, but the second argument is another list, (* 3 4).
To evaluate this list, PEEL multiplies 3 and 4 together to get the
product 12. Thus, evaluation of (+2 (* 3 4)) is equivalent to
evaluation of (+ 2 12), for which PEEL computes the value 14.

You can build up extremely complex s-expressions. For example,
consider the following:

(* (+ 2 3) (+4 5))

In this example, we see that * is a function with two arguments, and
that each of those arguments itself requires a function computation.
The value of the first argument is computed by adding together 2 and 3
to get 5, and the value of the second argument is 4 plus 5, or 9. The
value of the entire s-expression is computed by multiplying 5 by 9 to
get 45.
These examples illustrate the following general rules about evaluation
of s-expressions:

• PEEL evaluates s-expressions from the inside out. That is, it
evaluates the arguments of a function before evaluating the
function. (More precisely, the first item in the list is
evaluated, and if found to be a function name, then the
arguments are evaluated before the function is applied to the
arguments.)

• PEEL evaluates the arguments of a function from left to right.

S e c o n d E d i t i o n 3 - 8

ELEMENTARY PEEL PROGRAMMING

Note

We will see later that it is even possible for the first member
of a list, the member we have been calling the function name,
to be an s-expression. In that case, EEEL evaluates that
s-expression first, before evaluating any of the arguments.

Evaluating S-Expressions: Effect and Side-effect

When an s-expression is evaluated, the effect of that evaluation is the
value of the s-expression. For example, the effect of (+2 3) is the
value 5.

Sometimes an s-expression also has a side-effect. A side-effect is an
action that PEEL or EMACS takes in addition to evaluating the
expression. The simple example of +, just above, has no side-effect.
However, the s-expression (forwardjchar 5) has the side-effect of
moving the point in your text buffer forward five characters.

Every s-expression has an effect, or value, but not all s-expressions
have side-effects.

What then, you may wonder, is the value of (forward_char 5)? You can
easily discover that for yourself by simply executing the following
statement by either of the two methods we have discussed:

(print (forward_char 5))

If you try this, you will discover the following:

• PEEL prints () at the top of your terminal screen. This is the
null list, which we discussed previously in this chapter, and it
is the effect or value returned by the forward_char function.

• EMACS moves the point in your buffer forward five characters.
This is the side-effect of the forward-char function.

Thus we see that forward-char is an example of a function whose value
is not numeric but is a list. As we shall see, a function may return
any of a wide variety of data types, including numbers, lists, strings,
and so forth.

3 - 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

ASSIGNMENTS

In most high-level programming languages, the = sign is used to
indicate assignment of a value to a variable. For example, in many
languages the following statement assigns to the variable X the numeric
value 5:

X = 5

In PEEL, assignments are performed by executing s-expressions involving
PEEL functions. This section presents the following:

• The setq function

• The quote (*) operator

• The eval function

• PEEL Data Types

The Setq Function

The setq function can be used to assign a value to a variable. For
example:

(setq x 5)

This statement assigns to the atom x the value 5. This is the PEEL
equivalent of the assignment statement previously shown using the =
sign. Notice that assignment is a side-effect of the setq function.
Once an atom has been assigned a value, you can use that atom in any
s-expression, and PEEL will use the assigned value when it executes the
s-expression. For example, once the preceding statement has been
executed, then the statement (print (+ x 12)) prints the value 17,
computed by adding 5 (the value of x) to 12.

The Quote (') Operator

Normally when an atom appears in an s-expression, PEEL evaluates that
atom and replaces it with its value. You may suppress the evaluation
by using the quote operator. The quote operator consists of single
quotation mark (') placed before the atom to be quoted.

S e c o n d E d i t i o n 3 - 1 0

ELEMENTARY PEEL PROGRAMMING

Consider the following:

(setq v x)

(setq w 'x)

The first line assigns to the variable v the value of the atom x, or 5.
The second line assigns to the atom w the atom x itself, not its value.

To verify this for yourself, execute the preceding setq statements.
Then try each of the following print statements:

(print x)

(print v)

As you see, PEEL prints the value 5. Now execute the following print
statement:

(print w)

This time, you will notice, PEEL prints the name of the assigned atom,
x.

Eval Function

The eval function is, in a sense, the inverse of the quote operator.
Normally, when an atom is used in an s-expression, PEEL performs one
evaluation of that atom. As we have seen, the quote operator
suppresses that one evaluation.
The eval function causes PEEL to perform a second evaluation, that is,
an evaluation of the result computed from the first evaluation. To
understand this, consider this example:

(setq x 5)

(setq w 'x)

3 - 1 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

As we have seen, the value of w is not 5, but is rather the atom x.
Suppose you now attempt to execute this statement:

(print (+ w 3))

You might think that PEEL prints the value 8. However, remember that
the value of w is the atom x, not the integer 5, so in fact PEEL prints
an error message telling you that it is illegal to add the value of w
(the atom x) to something else.

Now suppose you attempt to execute this statement:

(print (+ (eval w) 3))

How does PEEL execute this statement? First, it evaluates the atom w
to get the atom x. However, since w is used as an argument to the EVAL
function, PEEL does an additional evaluation, computing the value of x
as 5. In this case, PEEL does print the value 8, computed by adding 5
to 3.

PEEL Data Types

Similar to most high-level languages, PEEL supports a variety of data
types. We will discuss them in detail in a later chapter, but for now
let us look at the most commonly used data types.

You may use the setq function to assign a value of almost any data type
to a variable. We have already seen two different data types used in
assignments, the integer data type and the atom data type. As we have
seen, the statement (setq x 5) assigns to the atom x the integer value
5, while the statement (setq w 'x) assigns to w the atom x. This
illustrates the use of the atom data type as opposed to the integer
data type.

The string data type may also be used in assignments. Consider, for
example, the statement:

(setq str "This is a string.")

This statement assigns to the atom str the string shown. You may print
out this string by using the statement:

(print str)

S e c o n d E d i t i o n 3 - 1 2

ELEMENTARY PEEL PROGRAMMING

Perhaps most interesting is the list data type. That is, you may
assign to a variable a value which is equal to a list of other atoms.
To do this, you usually need the quote operator ('). For example,
consider the following:

(setq lv '(+ 2 3))

Here the ' operator applies to the entire list that begins with the
following left parenthesis. Therefore, FEEL does not evaluate this
list, but simply assigns the list to the atom lv. Therefore, lv does
not have the integer (data type) value 5, but rather has the list (data
type) value (+2 3). You can see this for yourself by executing the
following statement:

(print lv)

Notice that this statement prints out the actual list as its value.

As before, you can force an additional evaluation to take place by
using the eval function. Consider, for example, the fol lowing
statement:

(print (eval lv))

This statement causes PEEL to actually evaluate the list assigned to
lv, and to print its value, 5.

ARITHMETIC OPERATIONS

All numeric variables in PEEL are integer variables. Therefore, you
cannot use PEEL to manipulate floating point or fractional values.
Furthermore, all mathematical operations are performed using integer
ar i thmet ic .

The following functions are used to perform arithmetic operations:

• Addition and multiplication

• Subtraction and negation

• Incrementing and decrementing by one

• Division and modulo

• Forms and nested statements

3 - 1 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Addition and Multiplication

As we have already seen, + performs addition and * performs
multiplication. For example, (+ 2 3) has the value 5, while (* 2 3)
computes the value 6. Neither of these operators has a side-effect.
The + function can take from one to eight arguments. All arguments
must be numeric. If there is only one argument, + and * simply return
the value of this one argument. If there is more than one argument, +
returns the sum of all the arguments, and * returns the product of all
the arguments. Here are some examples:

(+ 23)

(* 23)

Each computes the value 23.

(+ 1 2 3 4 5)

This s-expression computes the value 15.

(* 1 2 3 4 5)

This s-expression computes the value 120.

As with all functions, + and * can have as their arguments variables
and s-expressions. However, all arguments to these and other
arithmetic operators must have numeric values. For example, consider
the following:

(setq length 20)
(setq width 5)
(setq area (* length width))
(setq perimeter (* 2 (+ length width)))

The first two lines of this example set the variables length and width
to the integer values 20 and 5, respectively. The third line is the
PEEL representation of the ordinary formula area = length * width, and
it assigns to the variable area the value 100. The last s-expression
is the PEEL representation of the ordinary formula perimeter = 2 *
(length + width), and it assigns to the variable perimeter the value
50.

S e c o n d E d i t i o n 3 - 1 4

ELEMENTARY PEEL PROGRAMMING

Subtraction and Negation

The - function is used for both subtraction and negation. When it has
one argument, it performs the negation operation, and when it has two
arguments, it performs the subtraction operation.

Here is an example:

(setq a 5)

(setq b 8)

(setq c (-a))

(setq d (- b a))

The third line of this example negates the value of a and assigns the
result, -5, to c. The fourth line subtracts the value of a from the
value of b, and assigns the result, 3, to the variable d.

Incrementing or Decrementing by One

Adding 1 to, or subtracting 1 from, an integer is a fairly common
operation in computer programs. Thus, PEEL provides two operators for
convenience.

The 1+ function takes one argument and returns the value obtained by
adding 1 to that argument. For example:

(setq counter (1+ counter))

This adds 1 to the value of counter and assigns the result back to
counter, thereby incrementing the counter by 1.

The 1- function takes one argument and returns the value obtained by
subtracting 1 from that argument. For example:

(setq counter (1- counter))

This subtracts 1 from the value of counter and assigns the result back
to counter, thereby decrementing the counter by 1.

3 - 1 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Although these two operators are often convenient, they do not really
provide any additional functional capability to PEEL. As you can see,
the examples above are equivalent, respectively, to the following
examples:

(setq counter (+ counter 1))

(setq counter (- counter 1))

Division and Modulo

As previously stated, PEEL performs only integer arithmetic. This may
be inconvenient when you wish to divide two values and obtain a
noninteger value. To make this easier for you, PEEL provides functions
that compute either the quotient or the remainder of a division.

The division (/) and modulo functions complement each other. Each of
these functions takes two arguments. The / function returns the
quotient obtained by dividing the first argument by the second. For
example:

(/ numerator denominator)

This returns the value of the quotient obtained when the numerator is
divided by the denominator.

The modulo function returns the remainder obtained when the first
argument is divided by the second. For example:

(modulo numerator denominator)

This returns the remainder obtained when the numerator is divided by
the denominator.

In most cases, the quantities you will be dividing are positive
integers. When PEEL divides two integers using /, it truncates the
result by throwing away any fractional part. For example:

(/ 44 5)

This returns the value 8. The actual value of 44 divided by 5 is 8.8,
and PEEL truncates this result and returns 8.

S e c o n d E d i t i o n 3 - 1 6

ELEMENTARY PEEL PROGRAMMING

Qi the other hand, consider the following expression:

(modulo 44 5)

This returns the remainder from the same division, which is 4.

The above discussion tells what happens when both the numerator and the
denominator are positive. The following rules describe what happens
when one or both are negative:

• The / function always truncates toward 0. Therefore, (/ -44 5)
and (/ 44 -5) always return the value -8.

• If the value returned by modulo is non-zero, then its sign is
always the sign of the denominator. For example:

(modulo -44 5)

(modulo 44 -5)

These return the values 1 and -1, respectively.

Forms and Nested Statements

Because PEEL statements can be nested to any depth, you have the power
to make your PEEL programs as unintelligible as you wish.

For example, consider the following statement which converts a
temperature value from celsius to fahrenheit:

(setq fahrenheit (+ (/ (* (setq celsius 20) 9) 5) 32))

This example contains several nesting levels, and may be difficult to
read. You can simplify it as follows:

(setq celsius 20)
(setq celsius (* celsius 9))
(setq celsius (/ celsius 5))
(setq fahrenheit (+ celsius 32))

You may find this way of writing the program is not nested enough.
Ultimately, how you write a statement is a matter of personal taste.

3 - 1 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

In informal terminology, an s-expression that computes one simple
operation is often called a statement. A nested series of statements
is called a form. Using this terminology, the first fahrenheit example
above is defined as one form that contains five statements.

ARRAYS

Most high-level languages have the capability of storing data values in
arrays. Usually the high-level language provides a statement such as
DIMENSION or DECLARE, which you use to specify that a certain variable
is to be an array. When such declarative statements are used, you
specify at the time your program is compiled that a certain variable is
to be an array of a certain data type and a certain size.

Unlike other high-level languages, PEEL does not use declarative
statements to define arrays. As with other PEEL capabilities, array
creation and manipulation is performed in PEEL by invoking predefined
functions.

This section discusses the following topics:

• Creating an array

• Assigning values to an array

• Filling all or a portion of an array

• Referencing an array

• Arrays of other data types

• Arrays with multiple names

• Releasing storage allocated to an array

• Other array functions

Creating an Array
You use the make_array function to create an array. PEEL creates the
array as a side-effect of the function invocation. The format for
using this function is as follows:

(make_array type number)

Here type is an atom, a quoted name, specifying the data type of the
elements of the array, and number is the number of elements in the
array.

S e c o n d E d i t i o n 3 - 1 8

ELEMENTARY PEEL PROGRAMMING

For example, consider the following:

(make_array 'integer 5)

This function creates an integer array containing five elements. As we
shall see later, you may reference the individual elements by means of
subscript index values, which range from 0 through 4.

Unfortunately, the preceding example by itself is useless. The reason
is that, as in the case of other PEEL statements, unless you assign the
result to a variable, the result is simply thrown away. To do this,
you use the setq function. The full format for use of make_array when
you wish to use the created array is as follows:

(setq variable (make_array type number))

Here, variable is the name of the variable that you wish to use in
referencing the array. (You can think of it as the name of the array.)
For example, consider the following statement:

(setq boxes (make_array 'integer 5))

This creates an array called boxes that contains five individual
integer values, numbered 0 through 4.

Assigning Values to an Array

You use the aset function to assign a value to an individual element of
an array. The format is as follows:

(aset value variable index)

Here, value is the value to be assigned to the array element, variable
is the name of the array, and index is the index of the element in the
array. The value must have the same data type as the data type of the
elements of the array. In addition, the index must have an integer
value greater than or equal to 0 and less than the second argument of
the make_array function invocation that created the array.

3 - 1 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

For example, consider the array boxes, which was created earlier with
the statement (setq boxes (make_array 'integer 5)). For this array you
may use a statement in the following format to assign a value to an
individual element of that array:

(aset value boxes index)

Here, value is integer value less than 268435456 or 2**28, and index is
an integer value between 0 and 4. For example:

(aset 243 boxes 2)

This statement assigns the value 243 to the element of boxes with the
index 2. (Note that this is the third element of the array boxes,
since the first element has the index 0.)

Filling All or a Portion of an Array

You may use the fill_array function to assign the same value either to
all elements of an array or a contiguous portion of the array.

To fill an entire array, use the statement in the following format:

(fill_array variable value)

Here, variable is the name of the array, and value is any value whose
data type equals the data type of the elements of the array. PEEL
assigns the value to every element of the specified array.
For example:

(fill_array boxes 100)

This statement assigns the value 100 to each of the five elements of
the array boxes, which we previously defined.

If desired, you may specify two additional arguments to f ill_array to
assign a range of index values for a contiguous set of elements. For
example:

(fill_array boxes 100 2 4)

S e c o n d E d i t i o n 3 - 2 0

ELEMENTARY PEEL PROGRAMMING

This statement assigns the value 100 to the three elements of the array
boxes with indices 2, 3, and 4. The first two elements, with indices 0
and 1, are left unchanged.

The format of this use of fill_array is as follows:

(fill_array variable value indexl index2)

Here, indexl is an integer greater than or equal to 0 and less than the
size of the array, and index2 is an integer greater than or equal to
indexl and less than the size of the array. FEEL assigns the specified
value to all elements of the array whose index value is greater than or
equal to indexl and less than or equal to index2.

Referencing an Array

To recover the value of an individual element of an array, use the aref
function. The format is as follows:

(aref variable index)

Here, variable and index are the same as for the aset function. The
value returned by this function reference is the value stored in that
array element. Suppose, for example, you have filled an array by using
the following statements:

(fill_array boxes 200 0 2)
(fill_array boxes 100 3 4)

Then the statement (print (aref boxes 1)) prints the value 200, and the
statement (print (aref boxes 3)) prints the value 100.

Arrays of Other Data Types

We will discuss PEEL data types in detail in a later chapter, but for
now let's look ahead and see how to define arrays of other data types.

Consider the following example:

(setq messages (make_array 'string 30))

3 - 2 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

PEEL creates an array called messages containing thirty elements, each
of which has the data type string.

You may use the aset, aref, and fill_array functions just as you did
before, provided that you use string values, where before you used
integer values. For example:

(fill_array messages "This is a message.")

This statement assigns to each of the thirty elements of the array
messages the string "This is a message.". Now let's change one element
of the array:

(aset "new message." messages 20)

This statement assigns the string "new message" to the element of the
array messages with index 20. Now let's change another element of the
array:

(aset (aref messages 21) messages 20)

This fetches the value of the element of messages with index 20 and
assigns that value to the element of messages with index 21. In other
high-level languages this string assignment might be written as:

messages(21) = messages(20)

Nov/ consider the following examples:

(setq laundry_lists (make_array 'list 12))
(setq in_trouble (make_array 'Boolean 100))

When PEEL executes these statements, it creates two arrays, a
twelve-element array called laundry_lists, each of whose elements is a
list, and a 100-element array called in_trouble, each of whose elements
is Boolean. In a later chapter, we will discuss the list and Boolean
data types, and describe how they are used.

S e c o n d E d i t i o n 3 - 2 2

ELEMENTARY PEEL PROGRAMMING

Arrays With Multiple Names

You may use the setq function to bind a given array to more than one
name. For example, given the array boxes previously defined, you could
use the following statement:

(setq rectangles boxes)

This statement gives this same array a second name, rectangles.

It is important for you to understand that this statement is not an
array assignment in the sense that array assignment is used in other
high-level languages. In those languages, an array assignment is
performed when there are two arrays, occupying separate storage areas,
and the value of each element from the first array is assigned to the
corresponding element in the second array.

In the example we are considering here, we are discussing a single
array occupying one storage area. The setq statement above gives two
different names to that single array. (More precisely, the statement
creates a new atom, rectangles, whose value is the same as boxes in the
sense that they both reference the same location in storage.) For
example:

(aset 874 boxes 0)

This statement assigns the value 874 to the first element of the array
boxes, and therefore also to the first element of the array rectangles.
As a result, the statement (print (aref rectangles 0)) prints the value
874.

Releasing Storage Allocated to an Array

If you use make_array to create an array with a large numbe
elements, then a great deal of memory will be allocated by PEEL,
example:

number of
For

example:

(setq huge (make_array 'integer 20000))

This statement creates a 20,000 element array named huge. If you wish
to release the storage occupied by that array, the easiest way is to
assign a new value to huge. For example:

(setq huge 0)

3 - 2 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

This assigns the integer value 0 to huge, and releases the storage
previously occupied by the array huge.

If you have created an array and given it multiple names, then you must
reassign each of the multiple names in order to release the storage
occupied by the array.

Other Array Functions

The arrayjdimension function: The arrayjdimension function takes one
argument, which must be an array name, and returns the number of
elements in that array, as defined in the make_array function. For
example:

(setq boxes (make_array 'integer 5))
(print (array_dimension boxes))

These statements cause the value 5 to be printed.

The arrayjrype function: The array_type function takes one argument,
which must be the name of an array, and returns as an atom the data
type of the array specified in the make_array function. For example,
given the dimension of the array boxes above, consider the following
statement:

(print (array_type boxes))

This would print the atom integer.

As a slightly more esoteric example, suppose you wish to create a new
array with the same data type and size as an existing array. You could
use the arrayjdimension and array_type functions in the make_array
function, as follows:

(setq squares (make_array (array_type boxes)
(array_dimension boxes)))

In this example, the first argument of make_array is the data type of
the array boxes, and the second argument is the dimension size of the
array boxes. As a result, a completely new array, squares, is created
with the same data type and the same dimension size as the array boxes.

S e c o n d E d i t i o n 3 - 2 4

ELEMENTARY PEEL PROGRAMMING

FUNCTIONS THAT MANIPULATE LISTS

Because PEEL is a variant of the LISP (list processing) language, and
because lists are such an important part of the language, it is not
surprising that PEEL has special functions that allow you to manipulate
lists themselves. This section discusses functions that:

• Reference lists

• Form lists

• Pull apart lists

Referencing Lists

Most of the programming examples we have discussed manipulate either
numbers or strings. Furthermore, the variables in most cases have had
either integers or strings as their values. Now let us look at some
situations where a variable has a list as its value.

As we have seen, you usually use the ' operator if you wish to assign a
list to a variable. For example:

(se tq l i s tva l ' (abe))

This statement assigns to listval the list shown. If you now use
(print listval), PEEL prints out the value (abe). Note that, in the
setq statement, if the quote operator (') had been omitted, then PEEL
would have attempted to evaluate the list (abe) as a function call to
the function a with arguments b and c, and would have assigned the
result of that function call to listval. By including the quote
operator, we indicate to PEEL that no such evaluation should take
place. The result is that listval has as its value the list itself.

The Reverse and Length Functions: The reverse and length functions
provide simple manipulations on values with the list data type. The
length function takes one argument, which must be a list, and returns
the number of elements in that list. Consider the following example,
after listval has been defined as above:

(print (length l istval))

The statement prints the value 3, the number of elements in the list
which has been assigned to listval.

3 - 2 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

The reverse function takes one argument, which must be a list, and
returns another list equal to the first list but with the elements
reversed. For example:

(setq revlist (reverse listval))

This assigns to revlist the reverse of the list assigned to listval.
The result is that revlist has as the value (c b a).

These functions may be applied to null lists, with more or less obvious
results. For example:

(setq nullist '())

This statement assigns the null list to the variable nullist.

(length null ist)

This returns the value 0, the number of elements in the null list.

(reverse nullist)

This returns the null list.

As further illustration of these functions, let's consider the case
where one or the elements of a list is itself another list. For
example:

(setq nest '(a b (c d e) f))

This statement assigns to the variable nest a list containing four
elements. The third of these elements is itself another list. When
you apply the reverse or length functions to this list value, PEEL
simply treats the third element as simply another element, no different
from the other three elements that are atoms. Therefore, the function
(length nest) returns the value 4, and the function (reverse nest)
returns the value (f (c d e) b a). In both cases, the element (c d e)
is treated the same as the other elements.

S e c o n d E d i t i o n 3 - 2 6

ELEMENTARY PEEL PROGRAMMING

Forming Lists

If you have programmed in high-level languages with several data types,
then you know there are special operations that are applied to
variables of each data type. For example, the operations applied most
often to variables with integer data types are addition, subtraction,
multiplication, and division. The operations performed most commonly
on string values are concatenation and substring. Concatenation puts
strings together and substring pulls strings apart.

Similarly, there are special operations performed on lists. These
operations can be thought of as similar to the operations performed on
strings, in that they put lists together and pull lists apart. Let's
start with the operations that form lists by putting smaller lists
together.

The List Function: The list function takes one or more arguments and
returns a list as follows:

• The number of elements in the returned list equals the number of
arguments.

• Each element of the returned list equals the value of the
corresponding argument.

Consider the following example:

(setq x 23)
(setq str "This is a test.")
(setq y (list x str))

In this example, the reference to the list function has two arguments.
This reference returns a list containing two elements, each equal to
the value of its respective argument. As a result, the variable y is
assigned the following value:

(23 "This is a test.")

The Append Function: The append built-in function performs a more
complex list operation. It takes one or more arguments, and each of
its arguments must be a list. It returns a list value as follows:

• The number of elements in the returned list is equal to the sum
of all the elements in all of the arguments.

• The elements of the returned list comprise all of the elements
in all of the argument lists.

3 - 2 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

For example, consider the following:

(setq l is tva l ' (abe))
(setq newval ' (x y))

These statements assign list values to both the variables listval and
newval. Suppose that once these assignments have been made, we execute
the following statement:

(append listval newval)

This returns a list value containing five elements, (a b c x y). You
can use the value returned by the append function in the way that you
use other functions. For example:

(setq longlist (append listval newval))

This statement assigns to longlist this list containing five elements.
The result is the same as if you had executed the following statement:

(setq longlist '(a b c x y))

The Cons Function: The cons function adds a new element to the front
of an existing list. Consider, for example, the following:

(se tq l i s t va l ' (abe))
(setq list2 (cons 'd listval))

These statements assign to list2 the list obtained by adding the
element d to the front of the value of listval. The result is that
list2 equals (d a b c).

Pulling Apart Lists

The car and cdr functions can be used to pull lists apart. Suppose we
define qv as follows

(setq qv '(a b c d e f))

S e c o n d E d i t i o n 3 - 2 8

ELEMENTARY PEEL PROGRAMMING

We know that we can use the length function to determine how many
elements there are in qv, but we do not yet have any functions to allow
us to determine what those elements are.

The Car Function: The car function takes a single argument, a list,
and returns as its value the first element in that list. Consider, for
example:

(car qv)

Given the definition of qv above, this function reference returns the
atom a.

By using car in conjunction with the reverse function, you can obtain
the last element of a list. For example:

(car (reverse qv))

This statement returns the atom f. This results from reversing the
list qv, to obtain (f e d c b a), and then applying car to that list to
get the first element, which is the atom f.

The Cdr Function: The cdr function takes one argument, a list, and
returns a list defined as follows:

• If the argument is the null list, then cdr returns the null
l i s t .

• If the argument is a list containing one or more elements, then
the list returned contains all the elements of the argument list
except the first element.

For example, given the definition of qv above, consider the following:

(cdr qv)

This function reference returns the list (b c d e f), which is obtained
by removing the first element, a, from the argument list.

By using car and cdr in various combination, you can obtain any element
in the list. For example:

(car (cdr qv))

3 - 2 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

This statement returns the second element of the list qv, b. This
works because: first, (cdr qv) returns the list (b c d e f); and
second, car applied to that list returns its first element, b, which is
the second element of the original argument list.

Similarly, consider the following statement:

(car (cdr (cdr qv)))

This returns the third element, c, of the list qv.

By combining the car and cdr functions, which pull lists apart, with
the functions previously described, which put lists together, you can
perform very complex list operations. For example, given the list qv
defined above, suppose you wish to form a new list that is the same as
qv except that the second element is removed. You can do so by using
the following expression:

(cons (car qv) (cdr (cdrqv)))

In this example, (car qv) returns a, and (cdr (cdr qv)) returns
(c d e f). Applying cons to these two arguments yields the result
(a c d e f), which is the original argument with the second element
missing.

S e c o n d E d i t i o n 3 - 3 0

Logic and Looping

Although the subjects of the preceding chapters have been a necessary
preliminary to our discussion, they really have not shown how to write
programs. This chapter begins the discussion of PEEL statements that
are necessary to write programs.

PEEL has great similarities to other programming languages in the area
of program logic. Specifically, there are two categories of command
statements: looping statements and decision statements.

PEEL offers two types of looping statements:

S t a t e m e n t D e fi n i t i o n

do_n_times Repeat an action a specified number of times.

do_forever Repeat an action until something happens that
causes a stopj3oing statement to be executed.

PEEL also offers three types of decision-making statements:

S t a t e m e n t D e fi n i t i o n

if ... else Choose one action or another, based on a Boolean
value.

4 - 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

select Choose an action based on any one of a number of
l isted conditions.

dispatch Choose an action based on the text at the current
cursor.

These five statements will be discussed at some length in this chapter,
together with Boolean and relational operators and the PEEL statements
that return Boolean values.

As you will see, these control statements are very simple and
straightforward. The only thing you should keep in mind is that the
control structure does not contain a GO TO statement. Consequently,
you should plan to write structured programs.

LOOPING

The two statements, or forms, that control looping are doji_times and^
do_forever. (Recall that a form, defined in Chapter 3, consists of a
number of s-expressions. The do_n_times form, for example, contains
the function name doji_times, an integer iteration count, and any
number of statements or forms.) The doji_times form tells EMACS to
perform the statements the number of times indicated between the
dc__n_times and the parenthesis concluding the form. After the
do_n_times count is exhausted, execution continues to the statement or
form following the closing parenthesis.

The do_forever form tells PEEL to go into an infinite loop, executing
each statement over and over again until something, we hope, tells it
to stop. (The do_forever statement is analogous to a DO UNTIL in
PL/10 The statement that stops the looping is stop jibing.
You can also use the stopj3oing statement in a doji_times form. In
this case the stop_doing acts as an early exit. The following three
examples illustrate the do_n_times form.

Example 1:

(setq counter 0)
(setq accumulator 1)
(doji_times 5

(setq counter (1+ counter))
(setq accumulator (* accumulator counter)))

(print accumulator)

S e c o n d E d i t i o n 4 - 2

LOGIC AND LOOPING

This function computes five factorial. A more general function is:

Example 2:

(setq counter 0)
(setq accumulator 1)
(setq loop_counter (prompt_for_integer "Type a number" 1))
(do_n_times loopjoounter

(setq counter (1+ counter))
(setq accumulator (* accumulator counter)))

(print accumulator)

The purpose of the prompt function is to print a message at the bottom
of the screen, then return what is typed at the terminal as its value.
The print string "Type a number" is followed by the default value of 1.

If you wanted to insure that the value of this function does not exceed
300,000, you would do the following:

Example 3:

(do_n_times loopjcounter
(if (> accumulator 300000)

(stopjdoing))
(setq counter (1+ counter))
(setq accumulator (* accumulator counter)))

While the if statement will be discussed in greater depth later in this
chapter, its use in PEEL is identical to its use in other programming
languages. The if statement in this example means that if the value of
accumulator is greater than 300,000, EMACS should execute the
stopj3oing statement.
The following example illustrates the do_forever form.

Example 4:

(do_forever
(if (line_is_blank)

(delete_char)
else

(stopjtoing)))
(do_forever

(prevJLine)
(if (line_is_blank)

(delete_char)
else

(stopjdoing)))

4 - 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

These two do_forever forms delete blank lines that may surround point.
The first form goes forward from point. Notice that the delete_char
command brings the following line to point; consequently, no movement
command is necessary. The second form requires a movement command
because the delete_char always results in a nonblank line at point.

Looping With Arrays

Looping is commonly used with arrays, which were defined in the
previous chapter. For example, consider the following array statement:

(setq boxes (make_array 'integer 5))

Execution of this statement creates an array called boxes with five
individual integer values, with indices 0 through 4. We have already
discussed how to set every element of an array to a value, as in the
following statement:

(fill_array boxes 100)

The same result can be accomplished by using the doji_times form, as in
the following:

(setq counter 0)
(do_n_times 5)

(aset 100 boxes counter)
(setq counter (1+ counter)))

As a more complex example involving arrays and loops, consider the
fo l l ow ing :

(setq counter 0)
(aset 1 boxes 0)
(do_n_times 4

(aset (* (aref boxes counter) 2) boxes (1+ counter))
(setq counter (1+ counter)))

(print (aref boxes 4))

The second line of this example assigns the value 1 to the first
element of the array boxes, the one with index 0. The next three lines
comprise a loop that sets subsequent elements of boxes to twice the
preceding element. The last line prints the value of the last element
of boxes, the one with index 4. The value printed is 16.

S e c o n d E d i t i o n 4 - 4

LOGIC AND LOOPING

DECISION STATEMENTS

The If Form

Although the if form was used before, it will now be discussed in
d e t a i l .

The structure of the if form is:

(i f (condit ion)
(statements/forms)

e lse
(statements/forms))

Condition must ultimately have the effect of returning a true or false;
that is, it must return a Boolean value. Only when condition is true
does EMACS execute the statements immediately following the IF. When
condition is false, EMACS executes the statements following the else.
Note that the else is not within its own set of parentheses. The
reason is that the else is part of the if form.

Here is an example of a simple if form:

(if (= counter 3)
(print "Counter equals 3")

else
(print "Counter does not equal 3")

As in other programming languages, the condition following the if can
be complicated.

(setq yes_.no (prompt "Do you want to continue"))
(if (I (= yes_no "YES") (= yes_.no "yes"))

(do_something)
e lse

(do_something_else))

In these statements, | means "or". This form (where do_something is
not a real statement) says that if yes_no equals "YES" or "yes", it
should perform the actions indicated by do_something. Otherwise, it
should "do_somethingjelse".
The if statements can test either user-defined conditions or PEEL
statements. In particular, KIEL contains a number of statements that
monitor the state ot the current buffer.

4 - 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Buffer Conditions

So far, you have seen very little interaction between information in a
buffer and the extension language. In order to write meaningful
extensions, EMACS must be able to give you information about a variety
of things. Below is a list of what EMACS can tell you. Remember that
"point" refers to the current cursor position.

Statement

at_white_char

beginning_of_buffer jp

beginning_of_line_p

empty_bufferjp

end_of_buffer_p

end_of_JLine_p

fi r s t _ l i n e _ p

las t_ l i ne_p

line is blank

looking_at "string"

D e fi n i t i o n

Returns true if point is at a space.

Returns t rue i f po in t is a t the
beginning of the buffer.

Returns t rue i f po in t is a t the
beginning of a line.

Returns true if the buffer is empty.

Returns true if point is at the end of
the buffer.

Returns true if point is at the end of
a line.

Returns true if point is anywhere on
the first line of a buffer.

Returns true if point is anywhere on
the last line of the buffer.

Returns true if point is at a blank
line. A blank line is a line which is
either just a carriage return or spaces
and a carriage return.

Returns true if string is immediately
to the right of point.

~ >

Because (if (looking_at "string")
been combined into the form:

..) is very common, the two have

(if_at "string"
else ...)

Second Edition 4-6

LOGIC AND LOOPING

Let's see how these statements are used. The following example shows
how to find the end of a paragraph of text. For this example, an
endjofjparagraph is defined as one of the following:

1. A line beginning with a period (that is, a RUNOFF command)

2. A blank line

3. The end of the buffer

The example checks for each condition.

(begin_line)
(next_J.ine)
(do_forever

(if_at "."
(stopj3oing))

(if (line_is_blank)
(stopj3oing))

(if (last_line_p)
(movejDottom)
(stopjdoing))

(nextJLine))

The only new things here are the begin_line and next_line statements.
These, and other movement commands, are discussed in Chapter 8.
However, if you are inpatient to get started, you can find out what
many of the movement commands are by typing {CTRL-_J C followed by the
keystroke that invokes a movement. For example:

{CTRL-_J C {CTRL-A}

This tells you that the name of the function that goes to the beginning
of a line is begin_line.

Action Commands

The previous section talked about PEEL statements that provide
information about the placement of point. A second category of
conditions indicates that an operation has been successful. You have
already seen one example, namely:

(if (forwardjsearch "the")

4 - 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

This statement returns true if and only if EMACS finds a "the" between
point and the end of the buffer. Therefore, any statements after the
condition are executed only if a "the" is found.

In general, if a statement can fail, it will return a Boolean that
indicates that the operation has failed. Appendix A lists what is
returned for every command.

Boolean and Relational Operators

Throughout this chapter, you have seen examples of Boolean operators,
The Boolean operators are:

O p e r a t o r F u n c t i o n

& Performs logical "and" on its arguments. If all
arguments are true, & returns true.

I Performs logical "or" on its arguments. If one or
more arguments are true, | returns true.

Negates (or inverts) a Boolean value. That is, if
the argument is true, this function returns false.
If the argument is false, this returns true.

For example, if an operation will be performed when a line is not
blank, you would have the form:

(if C (line_is_blank)) (do_something))

The relational operators compare elements and report on their
relationship. The PEEL relational operators are:

O p e r a t o r F u n c t i o n

< Returns true if the first argument is less than the
second argument.

<= Returns true if the first argument is less than or
equal to the second argument.

= Returns true if the first argument is equal to the
second argument.

S e c o n d E d i t i o n 4 - 8

LOGIC AND LOOPING

>= Returns true if the first argument is greater than
or equal to the second argument.

> Returns true if the first argument is greater than
the second argument.

*= Returns true if the first argument does not equal
the second argument.

The Select Statement

When creating an extension, you often want the program to choose from a
number of alternatives. One way to do this is by having a long series
of nested if statements. For example:

(if (= counter 1) (do_something)
e lse

(if (= counter 2) (do_something_else)
e lse

(if (= counter 3) (do_a_third_thing)
• • •

)))

Fairly soon, you are nested so far down that you do not know where you
are. Moreover, keeping track of all the parentheses can be next to
impossible.

The PEEL statement that gets you out of this bind is select. Using the
above example, you might type:

(select counter
1 (do_something)
2 (do_something_else)
3 (do_a_third__thing)

• • •
otherwise

(do_what_you_have_to))

This form tells PEEL to choose an action based on the value of a
variable (in this case, counter). If no action can be chosen because
counter does not have a value specified in the list, do the action
indicated by otherwise. The select statement, then, is just another
incarnation of the standard programming language construct of a CASE
statement.

4 - 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

The full structure of this form is:

(select expression
constants-1 actions-1
constants-2 actions-2

.
otherwise

other-actions)

The structure augments the above example by showing that two other
things are possible: 1) that the argument list can have multiple
entries, and 2) that more than one statement can follow a choice.

This structure is a little hard to read (especially since the statement
is fairly trivial). The following example better illustrates what the
select statement does. If you have used the settab command (located in
library EMACS*>EXTENSIONS>SOURCES>TAB1.EM), you will recall that you
are told to type one of several characters. The following example,
while modified slightly, is taken from that function:

(defun move ()
(setq movement (prompt "Type a space, T, b, f, or q"))
(select movement

(delete_char)
(insert " ")

" t "
l imn (insert "T")

(deletejchar)
Iff ft

lip It (forwardjchar)
"b"
"B" (if C (beginningjof_line_p))

(back jchar))
"q"
"Q" (return)
otherwise

(infojnessage "unknown response")
(sleep_for jijnilliseconds 1000)))

As you can see, this is a very simple function. First of all, a prompt
is displayed. The keystroke the user types is assigned to the variable
called movement. If it is a space, the actions following the space are
executed. Likewise, if the user types either f or F, the action
indicated there is executed, and so on. Finally, if what is typed is
not in the list, a message is displayed (using the infojtiessage
built-in function). So that the message is displayed long enough to be
seen, EMACS is told to go to sleep for 1 second. In this function,
return means exit from the routine.

S e c o n d E d i t i o n 4 - 1 0

LOGIC AND LOOPING

The Dispatch Statement

In a similar manner, you can use the dispatch statement to have EMACS
choose from a number of choices based on what text follows point. The
structure of this form is:

(dispatch
strings-1 actions-1
strings-2 actions-2

• • • • • •
otherwise

other-act ions)

In this form, string is the text that follows point. The way this form
works is identical to the select form. The only difference is that
there is no variable assignment phrase. Instead, EMACS checks to see
if the text following point matches one of the strings listed in the
str ings l is t .

4 - 1 1 S e c o n d E d i t i o n

Writing Extensions

Previous chapters have given you numeric examples and functions that
you can use to write EMACS extensions. This chapter pulls together all
the underlying rules for writing EMACS extensions by describing the
programming environment for doing so.

THE EMACS/PEEL ENVIRONMENT

Although PEEL is a high-level language, the method you use to write
programs in PEEL is quite different from the method you use to write
programs in most other languages.

When you write a program in other high-level languages, you usually use
the following procedure:

• Use an editor (such as EMACS) to create an ASCII source file for
the program you wish to execute.

• Execute the compiler for the high-level language to transform
the source file into an object file.

• Execute the linking loader to produce an executable binary file.

• Execute the resulting executable file.

The PEEL environment is much more dynamic than the environment just
described for other high-level languages. As you already know, you can
create a PEEL source file in EMACS. You can then execute the program

5 - 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

by typing {ESC} {ESC} pi without having to perform separate compilation
or linking steps, and, in fact, without ever having to leave EMACS
itself. The result is that the PEEL programs you write become a part
of the EMACS environment, making it easy to extend the power of EMACS
and tailor it to your specific needs.

Especially important to the PEEL language are the defcom and defun
functions. When one of these functions is executed, it has the
important side-effect of permanently adding a new command or function,
respectively, to the EMACS environment you are using. The result is
you can use the command or function that you have defined at any point
after that in your EMACS session.

THE DEFCOM FUNCTION

You use the defcom function to define a new command. For example, in
Chapter 2, you saw the following defcom example:

(defcom tx
(do_n_times (numeric_argument 1)

(f orward_char)
(forwardjchar)
(forwardjchar)
(self_insert \.)

))

When you execute this function, PEEL defines a new command called tx to
perform the specified action. This definition of tx illustrates the
simplest form of the defcom function, which is as follows:

(defcom name (action))

Before describing more complex uses of defcom, let's make it clear what
the definition of tx in the above example does.

In the example, defcom defines tx to be a a>mmand that moves the
current cursor (point) in your source file ahead three characters, and
then inserts a period at the new position of point in your text buffer.

The defcom action also contains a loop specifying that the operation
just described may be repeated several times, depending upon the value
of the following:

(numer ic_argument 1)

S e c o n d E d i t i o n 5 - 2

WRITING EXTENSIONS

This function reference appears because, once the defcom has been
executed, it is possible to invoke tx with a numeric argument. The
numeric_argument function returns the value of that numeric argument.
The "1" specifies the default value to be used in case tx was invoked
with no numeric argument at all.

Inserting a Documentation Line

When you use {CTRL-_J to obtain information about a command, normally
EMACS provides you with information just about system commands. When
you add your own PEEL commands to the EMACS environment, you may also
wish at the same time to make command descriptions available with the
help facility. You can do this by means of the &doc option to defcom.
For example, here is how you would change the definition of tx
previously given:

(defcom tx
&doc "Move cursor 3 chars, insert dot"
(do_n_times (numeric_argument 1)

(forward_char)
(forward_char)
(forward_char)
(self_insert \ .)

))

This example is exactly like the preceding one, except that the second
line has been inserted. This line specifies the character string to be
used as documentation for this command when it is requested.

If you now use {ESC} X pi, EMACS does two things: 1) it adds the tx
command to its command environment, and 2) it adds the specified
documentation to its help facility. You can see this for yourself by
typing {CTRL-_} A, and then, in response to the "Apropos:" prompt,
typing the words "insert dot". EMACS will respond by listing the tx
command with the documentation line, "Move cursor 3 chars, insert dot",
that you specified.

ARGUMENT HANDLING WITH DEFCOM

Let us now look at some variations of the tx command example we have
already given. In these variations, we wish to focus on some of the
different ways to handle arguments to a defcom command.

In fact, PEEL provides several different methods for handling
arguments. We have already seen how to use the numeric_argument
function, which returns as its value the value of the numeric argument

5 - 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

supplied with the function. (Recall that to invoke the tx command with
a numeric argument you use {ESC} n {ESC} X tx.) However, PEEL also
provides other methods for handling the numeric argument, and some of
these methods are more convenient in certain circumstances.

Using Numeric Argument as a Repeat Factor

In the tx command example we just gave, we used the numeric argument
simply for the purpose of specifying how many tines the action
specified by the command was to be performed. There is a way of doing
that automatically, as illustrated in the following example:

(defcom txb
&doc "Move cursor 3 chars, insert dot"
&na (&repeat)

(forwardjchar)
(forwardjchar)
(forwardjchar)
(self_insert \ .)

)

When you execute this defcom, PEEL defines txb as a command that does
exactly the same thing as tx, but specifies it in a slightly different
way. The difference has to do with the following line:

&na (&repeat)

In this form, &na tells PEEL that it is to process a numeric argument
to the txb command in a special way, and srepeat tells PEEL what that
special way is: as a repeat factor. As a result of this line, PEEL
uses any numeric argument you specify with the txb cxaranand as a repeat
character, and it repeats the body of the command that number of times.

Notice that when you use this method to specify the handling of a
numeric argument, you need not specify any default value, because the
default value is always 1.

S e c d n d E d i t i o n 5 - 4

WRITING EXTENSIONS

Passing the Numeric Argument to a Variable

You may also specify that PEEL pass the numeric argument to a variable
whose name you specify. For example, suppose we redefine the tx
command again as follows:

(defcom txc
&doc "Move cursor <arg> chars, insert dot"
&na (&pass curmov &default 1)

(doji_times curmov (forwardjchar)
(self_insert \ .)

)

This command works a little differently from the previous examples.
Notice that the third line of the definition is:

&na (&pass curmov Sdefault 1)

This line specifies that when there is a numeric argument with the txc
command, PEEL is to pass the value of that numeric argument to the
variable curmov, which you have specified. Moreover, if no numeric
argument is provided when txc is invoked, the default value 1 is to be
assigned to curmov.

Once you have assigned the value of the numeric argument to a variable,
you can of course use that variable in any way you like. In the
definition of txc above, we have used it to specify the number of times
that the forward_char function is executed before the dot is inserted.
Therefore, the txc command works a little differently than either txb
or tx, because the cursor is not automatically moved three times.

Specification for &na

Any defcom definition can contain a line beginning with &na to specify
how a numeric argument is to be handled by the command. The following
are the three possible formats for use of &na:

&na (&repeat)
&na (&pass name &default value)
&na (&ignore)

The first format, using &repeat, tells PEEL that a numeric argument
specifies the number of times that action is to be performed. If no
argument is specified when the command it invoked, then the action is
performed once.

5 - 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

The second format, using &pass, specifies that a numeric argument is to
be assigned to the variable with the specified name, and that if no
numeric argument is given, then the specified value is to be assigned
to the variable name.

Note

The variable named in the &pass option is treated as a "local
variable" by PEEL. This means any value assigned to this
variable is valid only within the action performed by that
command. If you have elsewhere used a variable with the same
name, then that variable is unaffected. We will discuss local
variables in greater detail later in this chapter.

The third format, using &ignore, specifies that any numeric argument
supplied with the defcom command is to be ignored.

Prompting for an Argument Value

All the methods for handling numeric arguments that we have described
so far use the {ESC} n convention for supplying the numeric argument
when the command is invoked. Following is a totally separate method
for supplying a numeric argument to a command.

When the command is invoked, the a^mmand prompts the user for the value
of the information needed, and allows the user to type whatever value
is desired. To understand how this works, suppose we rewrite the
definition of txc as follows:

(defcom txd
&doc "Move cursor specified # chars, insert dot"
&args (

(curmov &prompt "Type amount of cursor movement"
^default 3 Sinteger)

)
(do_n_times curmov (forwardjchar)
(self_insert \ .)

)

Notice that lines three through six of this definition contain an
option beginning with &args. This option specifies a great deal of
information, as follows:

• &args specifies that when the command is invoked it will, as
part of its action, request information to be typed at the
terminal .

S e c o n d E d i t i o n 5 - 6

WRITING EXTENSIONS

• curmov is the name of a variable into which PEEL stores whatever
value is typed at the terminal when the command is invoked. You
may use your own choice for the variable name. (As with the
&pass option of &na, the variable specified here is a local
va r iab le .)

• &prompt and the following text specify the text that PEEL will
display when the command is invoked in order to prompt the user
for the desired information.

• &default 3 specifies that after the prompt is displayed, if the
user types {RETURN} without typing a number, then a default
value of 3 will be assigned to the variable curmov.

• &integer specifies that the value to be typed in response to the
prompt must be an integer value.

When the command txd is invoked, PEEL displays the following line at
the bottom of your screen:

Type amount of cursor movement:

The user may then type an integer value that PEEL receives and assigns
to the variable curmov. Then, the txd function uses this value to
determine the number of times to invoke the forwardjchar function.

Specifications for &args

As you can see, &args allows you to specify an argument by an entirely
different method from &na. You may use both &na and &args in the same
defcom definition. Although a command defined by defcom may use only
one numeric argument of the type described by &na, it may use any
number of arguments with &args. Furthermore, the latter arguments may
be integer or string data types.

The format ot &args is as follows:

&args ((spec!) (spec2)...)

That is, &args is followed by a parenthesized list of one or more
specifications, and each ot those specifications is itself enclosed in
parentheses. The format of a parenthesized specification is as
fo l lows:

(name sprompt string
-default value
type)

5 - 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

This specification contains the following information:

• Name is the name of a variable to which the value typed at the
terminal is to be assigned.

• String is the text of the prompt string that PEEL will use to
prompt for the argument value.

Value is the default value to be assigned to the variable in
case the user responds to the prompt by hitting {RETURN} without
typing any value.

is the data type of the value that the user must type at
le terminal in response to the prompt. Note that the default

value specified by value must have a corresponding data type.
The data type must be one of the following: -integer, -String,
or Stsymbol; the corresponding data types for value are integer,
string, and atom, respectively.

FORMAT OF DEFCOM

The full format of the defcom function is:

(defcom command jiame
_doc documentationjstring
&na (fcrepeat)

(&pass name [^default value])
(Signore)

&args ((name Stprompt string
-default value
-string | ssymbol I -integer)

...)
&chararg
body
...)

The elements have the following meaning:

defcom Is the name of the special function that defines a
command, establishing the command's name, its
documentation sequence, and argument acceptance mode.

_doc Documents what the command does. The text of the
documentation string wil l appear in such help
facility texts as apropos and explain_key.

S e c o n d E d i t i o n 5 - 8

WRITING EXTENSIONS

&na Tells EMACS that this defcom accepts a numeric
argument for the command. It also specifies how the
argument will be handled. The following are keywords
used in the &na clause:

&repeat Tells EMACS how many times it
should repeat the body of the
defcom code.

&pass

Signore

Tells EMACS the numeric argument is
to be transmitted to a named
variable. I f the -default option
is specified, it gives the default
value to be used if no argument is
typed when the command is invoked.

Tells defcom
arguments.

to i gno re numer i c

&args Declares a name that will receive text typed at the
terminal. The following are keywords used in the
&args clause:

&prompt Displays the given string in the
m i n i b u f f e r. T h e r e p l y t o t h e
prompt becomes the value of the
argument.

&string Says that the argument will be a
str ing datatype.

&symbol Says that the argument will be a
symbol data type.

&integer Says that the argument will be an
integer data type.

-default Defines the default value for an
argument. This value will be used
if a carriage return is typed in
response to &prompt.

&chararg Tells EMACS to save the character (the keypath) used
to invoke a command. (This is needed for macros that
wish to use the command argument for further
processing.)

5-9 Second Edition

EMACS EXTENSION WRITING GUIDE

Note

As currently implemented, PEEL does not
r e q u i r e t h a t & c h a r a r g b e u s e d . T h e
character_argument function can obtain the
keypath information regardless of whether
Schararg was specified or not.

Further Examples

Here are a few defcom examples that show how its syntax is put
together.

Example 1:

(defcom mark_end_of_word
Sdoc "places a mark at the end of the current word"
(mark)
(forwardjword)
(exchange jnark))

This simple macro executes three statements that place a mark at the
end of the current word, and then return point to where it was before
the command was invoked.

Example 2:

(defcom set_rightjnargin
Sdoc "Sets the right margin for word wrapping"
&args ((foobar Sprompt "Type right margin value"

&default 70
- in teger))

(setq filljcolumn foobar))

The variable filljcolumn is a global variable used by the EMACS word
wrapping routines. EMACS uses this variable to determine what the
maximum right margin should be. Thus, you can affect how EMACS does
word wrapping simply by changing the value of this variable. The
set_rightjmargin command can do that easily.

In this command definition, sargs defines an argument called foobar
that is used in the command as an intermediate variable that is
eventually assigned to filljcolumn. This works as follows:

• The value of foobar is the number typed in response to the
prompt.

• If a carriage return is typed, the default value is 70.

S e c o n d E d i t i o n 5 - 1 0

WRITING EXTENSIONS

• foobar is an integer variable.

Once the value of foobar has been established, the defcom can do its
"work" by setting the variable filljcolumn to the value stored in
foobar.

If a user types a reply that is nonnumeric, EMACS will print an error
message indicating that a conversion error has taken place.

Example 3:

(defcom backward_para
Sdoc "Move backward a paragraph"
SJia (Stpass count sdefault 1)
(if (> count 0)

(backwardjparaf count)
else

(forward_paraf (- count))))

This command is used to call one of two functions. The Sena accepts a
numeric argument, if one is typed, and assigns it to a variable called
count. If no argument is typed, the default value is 1. If the value
of count is positive, the backward_paraf function is called. However,
if count is negative (meaning that the user wants to go in the opposite
direction) forward_paraf is called.

THE DEEUN FUNCTION

Just as the defcom function can be used to define commands that are
invoked from the keyboard, the defun function can be used to define
functions that can be invoked from other PEEL programs. In other
programming languages, similar capabilities are provided by functions,
subroutines, and procedures.

You have actually been using functions all along in your PEEL programs.
For example:

(forwardjchar 5)

This function invokes the forward_char function with the argument 5.
The function moves the cursor forward five characters. As another
example:

(+ 2 3)

5 - 1 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

This function invokes the + function with arguments 2 and 3. This
function returns the value, 5, computed by adding together all the
arguments.

You will learn how to define your own functions. In order to define a
function you must specify several pieces of information, including the
fo l low ing :

• The name of the function. In the examples we have just been
considering, the names of the functions were forwardjchar and +.

• Information about the arguments to the function. For example,
you can specify the number of arguments, and whether some of the
arguments are optional. (Recall that the + function can have
from one to eight arguments. This means that the first argument
is required, and the other seven arguments are optional. Also,
recall that the single argument to the forwardjchar function is
also optional, with a default value of 1 if you do not specify
i t .)

In addition, you may specify what the data type of each of the
arguments is to be. For example, you can specify that the
argument must be an integer, or must be a string, or may be of
any PEEL data type.

• What action the function is to take. For example, you can
specify that when the function is invoked, it is to manipulate
the text in your buffer in certain ways, or it is to prompt you
for certain values, or it is to make certain computations. In
fact, you can use any other PEEL functions to specify the action
to be taken, even functions that you yourself have defined in
other defun functions.

• What value, if any, the function is to return. If you specify
no return value, then the function automatically returns a null
l i s t .

Format of a Simple Defun

The simplest format of a defun is as follows:

(defun name (argument_list)
action

)

This format consists of the following elements:

• Defun is the name of the function that defines a user-defined
function. When the defun is executed, the new function becomes
defined.

S e c o n d E d i t i o n 5 - 1 2

WRITING EXTENSIONS

• Name is the name of the function being defined.

• Argument_J.ist is the specification for the arguments and
variables to be used with the function. This specification will
be described in greater detail below.

• Action specifies what action the new function is to take when it
is invoked.

Let us look at some examples.

Function Without Arguments

Consider the following defcom example:

(defun upjchar ()
(mark)
(forwardjchar)
(uppercase_region))

This defun defines a new function, called upjchar. The purpose of this
function is to convert the character in your buffer at point to
uppercase. As you can see frcm the definition, the name of the
function is upjchar, there are no argument specifications, and the
action proceeds as follows:

(mark)

This marks the current position in your text buffer,

(forwardjchar)

This moves the point ahead one character, thus defining a region
consisting of that single character.

(uppe r case_region)

This converts that single character to uppercase.

5 - 1 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Function With a Single Argument

In order to use defun, you define a function that has one argument,
using the following format:

(defun name ((argname type))
ac t ion
)

In this format, argname is the name of the argument that you are
defining, and type is the data type of the argument, usually integer or
s t r i n g .

For example, we can increase the usefulness of the upjchar function
previously defined by letting it take an argument equal to the number
of characters to be converted to uppercase. Consider the following:

; upjchars converts the specified # chars to upper case
(defun upjchars ((count integer))

(mark)
(forward_char count)
(uppercase_region))

In this example, the function upjchars is defined as having a single
argument, called count, which is of the integer data type. The action
for up_chars is the same as the action for the previously defined
function upjchar, except for the following line:

(forwardjchar count)

This line moves the point ahead by the number of characters specified
in the argument, rather than just one character. The result is that
the marked region becomes the number of characters specified by the
argument, and that entire region is converted to uppercase. For
example:

(upjchars 8)

This invocation of the function defines a region consisting of the
eight characters following point and converts them to uppercase.

S e c o n d E d i t i o n 5 - 1 4

WRITING EXTENSIONS

Functions With Several Arguments

The following is the format of defun for a function with two or more
arguments:

(defun name
((argnamel typel) (argname2 type2)...)

ac t ion
)

As you can see, you simply specify the names of each of the arguments,
and the corresponding data types.

Function With a Single Optional Argument

We have previously defined the up_chars function as a function that
takes a single integer argument, and converts that number of characters
to uppercase. Let us now change that example so that the argument is
optional and, if not specified, defaults to 1.

The format ot the defun that defines such a function is as follows:

(defun name (&optional (argname type))
ac t ion
)

The only difference between this format and the format with a single
required argument is the insertion of Stoptional at the beginning of the
argument list.

Following this format, here is the new definition of the upjchars
func t i on :

(defun upjchars (Stoptional (count integer))
(mark)
(if (null count) (setq count 1))
(forward_char count)
(uppercase_region))

The first l ine of this definition now specifies that the single
argument, count, is optional. Notice, however, there is an extra line
in the action portion of the definition:

(if (null count) (setq count 1))

5 - 1 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

This PEEL statement specifies what is to happen if the function
up_chars is invoked with no argument. In such a case, PEEL gives the
argument variable count a value equal to the null list; namely that if
count equals the null list, it should be set to the integer value 1.

Functions With Some Required and Some Optional Arguments

The format of the defun which defines a function with several
arguments, some of which are optional, is the same as defun with
several required arguments, with the following exception: you insert
the key word soptional between the last required argument and the first
optional argument in the last argument list. Note that, as you would
expect, PEEL requires that all optional arguments follow all required
arguments in the argument list.

Local Variables

Suppose you detine a function which contains the following as part of
its action specification:

(setq direction -1)

This is an assignment statement that assigns the integer value -1 to
the PEEL variable direction. You can then use that variable in other
statements in your function definition. In this respect, PEEL is no
different from other high-level languages where values are assigned to
var iab les .

The problem is the following: suppose you are using many PEEL
functions and, by coincidence, one of those other functions also uses a
variable named direction. In that situation, you may have a serious
but subtle programming bug, because one function would be changing the
value of a variable used by another function.

The solution to this problem is to use local variables. When you
define a local variable in a function, you are specifying: 1) that
local variable may be used only within the function being defined; and
2) if a variable by the same name is used in a different PEEL function,
PEEL is to treat that as a completely different variable, just as if it
had a different name.

The format of a defun function definition with local variables is as
fo l lows.

S e c o n d E d i t i o n 5 - 1 6

WRITING EXTENSIONS

(defun name (args
&local (varl typl) (var2 type2)...)

ac t ion
)

The elements of this definition are as follows:

• defun and name are, respectively, the function defining keyword
and the name of the function you are defining, as previously
described.

• ar9s is the argument list as previously described. There may be
no arguments or one or more arguments, and the keyword Stoptional
may appear to specify that the arguments that follow are
opt iona l .

• Sdocal is the keyword specifying that the variable names that
follow are local variables, not arguments.

• (varl typel) is the name of the first or only local variable and
its data type.

• (var2 typ2)... represents other local variables, if any, and
their data types.

• action is as previously described.

A function definition in that format may use any of the variables
defined as local variables in the Stlocal clause without fear of
disturbing the values of variables in other functions that happen to
have the same names.

For example, here is a fairly sophisticated example of a function that
centers the line on which point lies:

(defun center_linef (soptional (count integer)
slocal (line string)

(direction integer))
(if (< count 0)

(setq direction -1)
(setq count (- count))

e lse
(setq direction 1))

(doji_times count
(setq line (current_llne))
(begin_l ine)
(k i l l _ l i n e)
(whitespace_to_hpos (/ (- 80 (string_J.ength line)) 2))
(insert line)
(if (< direction 0)

(prev_line)
else

(next_line))))

5 - 1 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Since this example contains a number of new concepts and functions,
let's go through it step by step and see how it works:

• The function, which is named center-linef, takes one optional
argument, called count, and has two local variables, called line
and direction.

The purpose of this function is to center one or more text lines
on the page. The optional argument count specifies the number
of consecutive lines to be centered. The argument count may be
either positive or negative, to indicate that lines following or
preceding point, respectively, are to be centered.

line is a local variable with the string data type, and
direction is a local variable with the integer data type. As we
shall see, the variable line will be assigned the text of the
line in the text buffer being centered, and the variable
direction will be used as a flag to indicate whether the
argument count is positive or negative.

• The if clause tests whether count is positive or negative, and
sets the variable direction accordingly. In addition, if count
is negative, then it is reassigned so that it is positive.

• The doji_times function defines a loop to be executed once for
each line being centered, as indicated by the value of count.

• The statement (setq line (current_line)) uses the local variable
line. The function currentJLine is a standard PEEL function
that returns a string value equal to the text in the line on
which point lies. Therefore, the setq statement assigns the
text of the current line to the local string variable line.

• The next two statements move point to the beginning of the line
and delete that line.

• The next statement is more complicated than the previous ones,
because it uses several different functions in a nested form.
Let us look at it one step at a time.

The function (string_length line) uses the standard PEEL
function string_length to determine the number of characters in
the text line being centered.

S e c o n d E d i t i o n 5 - 1 8

WRITING EXTENSIONS

Next, the - function is used to subtract this number of
characters from 80. Note that we are assuming that you wish to
center your line in a field 80 characters wide. If this
assumption is incorrect, you would have to use a different
number or expression here.

Next, the / function divides the quantity computed so far by 2.
This equals the number of characters of white space that will
appear on either side of the centered line.

Finally, the whitespace_to_hpos function, which takes as its
argument the quotient from the division by 2, inserts blank
characters so that point is positioned precisely to center the
reinserted text.

• Next, (insert line) reinserts the text (stored in the string
variable line) of the line being centered.

• Finally, the if clause moves point either to the previous line
or to the next line, depending upon whether the original value
of the argument count was negative or positive.

Note that this example illustrates the following interesting point
about local variables: from the point of view of the action taken by
the function, there is no real difference between an argument and a
variable. Either can be assigned a value, and either can be used in
any statement in the action specified for the function. The only
difference is the obvious one: an argument may be assigned an initial
value by the argument list when the function is invoked, while a local
variable cannot.

Functions That Return Values

All the functions that we have defined so far perform some sort of
action but do not return a value. (In LISP terminology, this means the
functions have a side-effect but no effect. More strictly speaking,
the effect, or value, of each of these functions is a null list.)

Now let's see how you define a function that returns a value you
specify. The format is as follows:

(defun name (...
Sireturns type ...)

a c t i o n
return value))

5 - 1 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

The explanation of this format is as follows:

• Defun name is as previously described.

• The list in parentheses following the name contains different
types of information, such as specifications for arguments and
local variables, as we have already seen. Now we are adding a
new piece of information in the form:

-returns type

This specifies the data type that this function will return. In
place of type, you should specify integer or string or other
data type that the function might return.

• The function action concludes as follows:

(return value))

When the function you are defining is invoked, the return
function will terminate the action and return, as the value of
the function, the value you specified as the argument to return.
The value may be a constant or expression, but its data type
must be the same as the data type you specified in the Screturns
option.

As an example, let's define a function that counts the number of spaces
to the left and to the right of point, and returns that count as the
value of the function. Here is the definition of the function.

; count_spaces takes no arguments and returns a count of
; the number of spaces around point
(defun count_spaces

(Sreturns integer Stlocal (count integer))
(savejexcursion
(do_forever ; move back over spaces

(if (looked_at " ") (back_char)
else (stop_doing)))

(setq count 0) ; init space counter
(do_forever ; move forward over spaces

(if (looking_at " ")
(forward_char) (setq count (1+ count))
else (stopjffoing))))

(return count))

S e c o n d E d i t i o n 5 - 2 0

WRITING EXTENSIONS

This example defines a function called countjspaces. This function
works as follows:

• The list in parentheses following the function name count_spaces
indicates that the function takes no arguments, returns an
integer value, and uses one local integer variable called count.

• In many of the examples we have seen, the action specified by
the function moved point in the text buffer and left it in an
unpredictable place. Often this is inconvenient, and you would
prefer that a function leave point where it was when the
function was first invoked. One method of doing this is to use
the following:

(save_excursion action)

When you use the save_excursion function, as we have done in
countjspaces, PEEL remembers where the point is, performs the
action you specify, and then returns the point to wherever it
was before the action occurred.

• The purpose of the first do_forever loop is to move the point to
the left until a character other than a space is found. The
(looked_at " ") function determines whether the character
preceding the point is a space or not, and returns a Boolean
value to indicate that. The (back_char) function moves the
point back one character if that character is a blank, and the
(stop_doing) function terminates the do_forever loop if the
character was not a blank.

• The first setq initializes the counter variable count to 0.
When we are finished, count will contain the number of spaces we
are counting.

• The next do_forever loop moves the point forward, counting
spaces, until a character other than a space is found. The
(looking_at " ") function returns a truth value indicating
whether or not the character at point is a blank. If it is a
blank, then (forwardjchar) moves the point one character ahead,
and (setq count (1+ count)) increases the counter by one to
indicate we have passed over one space.

• Finally, (return count) terminates the function invocation,
returning the value of count to the caller.

5 - 2 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Another Example of Streturns

Consider the following example:

(defun move (sdocal (movement string)
Streturns Boolean)

(setq movement (prompt "Type a space, t, b, f, or q"))
(select movement" " (de l e te_cha r)

(insert " ")
(return true)

" t "
" T " (i n s e r t " T ")

(delete_char)
(return true)

" F " (f o r w a r d _ c h a r)
(return true)

"b"
"B" (i f T (beg inn ing_of_ l ine_p))

(backjchar)
(return true)

"q"
"Q" (return false)
otherwise

(infojnessage "unknown response")
(sleep_jEorji_milliseoonds 1000)
(return true)))

This defun defines a function called move that moves point or modifies
the text buffer depending upon the character typed in at a prompt.
This example uses some of the interactive features of PEEL that we will
be studying in a later chapter. The function works as follows:

• The list in parentheses following the function name indicates
that the function has no arguments, uses one local string
variable called movement, and returns a Boolean value.

• The statement (prompt "type a space, t, b, f, or q") types the
specified character string in the minibuffer at the bottom of
your display screen, and then waits for your to type a character
in response.

• The setq statement assigns the character typed in response to
the prompt to the string variable called movement.

• The select statement chooses an action to be performed, based on
the value of the variable movement.

S e c o n d E d i t i o n 5 - 2 2

WRITING EXTENSIONS

• If the character typed was a space, the function replaces the
character at point with a space. It does this by deleting the
character at point and returning a space. The function returns
a true Boolean value to indicate the operation is successful.

• If the character typed was "t" or "T", then the function
replaces the character at point with "T".

• For "f" or "F", the function moves point ahead one character.
In case of "b" or "B", the function moves point back one
character, although it leaves point unchanged if point is
already on the first character of the line.

• For "q" or "Q", the function returns a false Boolean value.

• Finally, in the case of any other input value, the function
displays the message "unknown response" in your minibuffer,
leaves the display for 1,000 milliseconds (one second), and then
returns with a true Boolean value.

As you can see, the only case where this function returns a false
Boolean value is when, in response to the prompt, the user types "q" or
"Q" for quit.

How would you use a function like move that we have just described?
You would probably want to call it over and over again until q is
typed. For example, consider the following:

(do_forever
(if C (move)) (stop_doing)))

As you can see, this form calls the move routine in an infinite loop,
and terminates only when q is typed.

FORMAT OF DEEUN

The full format of the defun function is as follows:

(defun name ((argumentl typel) ...
Stoptional ...
Strest ...
Stquote ...
Steval ...
Sreturns type
Stlocal (variablel type2) ...)

statementsjof jdefunjprogram
. . .)

5 - 2 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

The words in the above structure have the following meaning:

defun

argument

t___e

Stoptional

Strest

Builds a function with the specified name using
the given argument list and body.

Declares the name to be used for a parameter
passed to this defun from the defun or defcom
that calls it.

Declares the data type of argument. Data types
are discussed later in this chapter.

Says that all arguments past this point are not
required. If they are not there, they are set
to NIL.

Tells EMACS that it should take the rest of the
arguments and put them into a list, as for
example:

Strest (r list)

Stquote

&eval

&returns

- l o c a l

Tells EMACS that it should only bind all
following atoms, not evaluate them. To resume
evaluation of atoms, use the Steval argument.

Shuts off the Stquote argument used in defuns so
that all following arguments are evaluated.

Specifies the data type of the information
returned to the call ing routine. (This is
explained in depth later in this chapter.)

Says there are no further arguments in a defun
argument list, and that the remaining items of
information are variables that will have only a
scope of the current function.

COMBINING DEFCOM COMMANDS WITH DEFUN FUNCTIONS

We have now seen how to use defcom to define a command and defun to
define a function. It is common practice for PEEL programmers to set
up the defcom definition so that it does no work other than to call a
function defined by defun. This is very convenient because it puts all
the command logic into a function that can then also be called from
other places, if desired.

For example, here is a command that indents
buffer the same as your previous line.

one line of your text

Second Edition 5-24

WRITING EXTENSIONS

(defcom indent__relative
Sdoc "Lines up text or tabs text over more"
SJia (Stpass count sdefault 0)
(indent_relativef count))

(defun indent_relativef ((count integer)
Stlocal (indentation integer))

(prev_line)
(beginJLine)
(skip_over_white)
(setq indentation (curjipos))
(next_line)
(begin_line)
(whitej3elete)
(whitespace_to_hpos indentation)
(if (< count 0)

(setq count (- count)))
(if (> count 1)

(do_n_times (1- count)
(typejbab))))

Finds column indent of
previous line, saves it

Goes to beginning of next
l ine

Deletes space, if there
Indents line
Only positive values for

count are used
Indents the number of

additional tabs if
there is an argument

As you can see, the defcom defines a function called indent_relative.
The action specified for the command does nothing more than pass the
numeric argument to a function called indent_relativef. The sdoc line
of the command provides user documentation containing text for the help
facilities apropos and explain_key. The Sena line specifies that the
numeric argument, whose default value is 0, is to be assigned to the
variable count. The last line invokes the function indent_relativef
with the argument count.

The defun defines a function called indent_relativef that works as
follows:

• The list in parentheses following the function name indicates
that the function has one integer argument called count and one
integer local variable called indentation.

• When the function is invoked, the prev_line and begin_line
functions move point to the beginning of the preceding line.

• The skip_over_white function moves point to the first nonblank
character on that line. This is the method used to determine
how far the preceding line is indented.

• The cur_hpos function returns an integer value equal to the
horizontal position of point. In effect, this counts the number
of leading spaces on that line. The setq statement assigns that
value to the variable indentation.

• The next_J.ine and begin_line functions move point to the
beginning of the next line, the line on which point originally
lay when the function indent_relativef was invoked.

5 - 2 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

• The white_delete function deletes any leading spaces that
a l r e a d y a p p e a r a t t h e b e g i n n i n g o f t h a t l i n e . T h e
whitespaoe_to_hpos function inserts as many blanks as are
specified by the variable indentation. Since indentation equals
the number of blanks on tne preceding line, this statement
aligns the current line with the preceding line.

• The if statement sets count equal to its absolute value.

• The last if statement indents by additional tab amounts if count
is greater than one.

In the above example, notice the extensive use of the semicolon (;).
This character is used to delimit comments. It tells EMACS to
disregard any text from it to the end of the line. You may use
comments anywhere they are needed.

PEEL DATA TYPES

In this and preceding chapters, we have illustrated some of the more
commonly used PEEL data types. The ones we have illustrated that are
most like data types in other high-level languages are integer and
string data types. However, we also have discussed data types that are
unique to PEEL, such as the list data type.

Now let us summarize the PEEL data types.

The following five data types exist in some programming languages:

integer Can contain a positive or negative whole number

str ing Can contain a str ing; that is, a col lect ion of
characters

character Can contain one character

Boolean Can contain a true or false value

array Can contain multiple occurrences of a data type

The following three data types are used in LISP-style programming.

a t o m C a n c o n t a i n t h e b a s i c s t r u c t u r a l u n i t o f a
program

l i s t Defines a va r i ab l e t ha t w i l l con ta i n a l i s t

function Defines a variable that can contain a function

S e c o n d E d i t i o n 5 - 2 6

WRITING EXTENSIONS

The following two data types are unique to PEEL.

cursor Can contain a value that indicates a place in a
b u f f e r

dispatch_table Can contain an array-like variable that holds
entries that tell EMACS what functions it
should call when a keystroke invokes a function

The data type
to it.

'any" can have any one of the above data types assigned

Finally, handler and window are internal data types used by EMACS. A
handler is a special kind of function, while a window is the part of a
screen used to display a buffer. For example, you have two windows
when you split the screen.

Because many PEEL statements only operate on certain data types, it is
sometimes necessary to check to see what kind of data is being acted
upon. The way you check a variable's data type is with the typef
function. For example:

(typef variable)

This statement returns a number between 1 and 14, as follows:

1 any l i s t
2 Boolean cursor
3 character 11 di spatch_table
4 integer 12 handler
5 st r ing 14 window
6 atom 15 array
7 function

All of these have symbolic definitions to aid comparisons. For
example, Type, integer is an atom that has a value of 4 while
Type.function has a value of 7. This means that you can use mnemonics
when writing code. For example:

(if (= (typef atom) Type.integer) ...

Notice that the word "Type" begins with a capital letter.

5-27 Second Edition

EMACS EXTENSION WRITING GUIDE

GLOBAL AND LOCAL VARIABLES

Generally speaking, a global variable is one whose value can be
referenced in and changed by any PEEL command or function, while a
local variable is one whose value can be referenced in or changed by
only the command or function in which the variable is used. In this
section, we will examine how to use global and local variables in PEEL
programs.

Global Variables

When a variable always has meaning, it is referred to as a global
variable. Here are two examples used in the current EMACS libraries:

token_chars Globally establishes a set of 63 characters
those forming valid tokens. (The characters
are A-Z, a-z, 0-9, and the underscore
character.)

whitespace Globally establishes " " (the space character)
as the definition of blank space. Sometimes
whitespace is changed to include newline or
other characters.

These variables allow values to be used in a variety of contexts. For
example, token_chars is used by all functions that act upon words. For
the purposes of forward_word, or delete_word, a word is a token, and a
token is any string made solely of token characters. The variable
whitespace is used by such functions as delete_.white_J.eft and
skip_over_white.

The value of a global variable remains after a function has finished
executing. Thus, whitespace always remains available to every function
that needs it. W, however, one function changes the value of
whitespace, all other functions using it thereafter will use the
changed value.

How to Set Global Variables: A global variable is established by
assigning a value to a variable. For example:

(setq rightmost_column 70)

This establishes a variable called rightmostjcolumn and equates the
name rightmost_column to the value 70. Stated in another way, all that
you do is make up a name and assign something to it.

S e c o n d E d i t i o n 5 - 2 8

WRITING EXTENSIONS

Limitations of Global Variables: Many books on structured design and
structured analysis decry the use of common blocks and common storage
because they contain things that are, in effect, global variables. The
reason they are not too well liked is as follows:

Suppose you have three subroutines, called A, B, and C, and A
calls B then C. Assume B modifies a global variable in
anticipation for some action of C. Obviously, this will work
fine. However, what happens if a new routine, D, is written
and it modifies the same value and is called between B and C?
This means that the application programmer must study B and C
carefully, learning how they share global variables, to avoid
accidentally interfering with any of them. If subroutines B
and C had been constructed to pass information only through
argument l ists, avoiding global variables, the application
programmer would not need to be concerned about global
variables at all. Stated in a different way, global variables
mean that routines have less control over their data and that
they cannot be considered "black boxes".

Sometimes, as with token_chars and whitespace, the variable pertains to
the entire environment. In this case, and probably only in this case,
a global variable should be used.

Local Variables

In most cases, it is convenient to define variables in which you can
store values for a limited time. By this we mean variables that are
used only in the command or function you are defining, and that do not
affect variables in other cx5mmands or functions, even when those
variables have the same names.

Such variables are called local variables, and we have discussed them
earlier in this chapter. We have identified three ways to define local
variables, all illustrated earlier in this chapter:

• In a defcom, the variable specified with the Stpass option of the
Stna clause is local to the defcom in which the clause appears.

• In a defun, all the arguments to the function you are defining
are local variables.

• Also in a defun, local variables may be explicitly specified by
means of the -local option.

If your command or function uses a variable that is not specified as
local by any of the means just described, then PEEL considers it to be
a global variable, and you may have conflict with a global variable of
the same name used in a different command or function.

5 - 2 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Properties of a Variable

Any PEEL variable has three properties:

• The name of the variable

• The value of the variable

• The attributes of the variable

There are two kinds of attributes:

• The data type of the variable, which indicates what type of
value (integer, string, list, any, and so forth) can be stored
as the value of the variable

• The scope of the variable, the portion of your PEEL program in
which you may reference or change the value of the variable.

In the remainder of this chapter, we will discuss saving and
reinstating the properties of a variable. Keep in mind that we will be
discussing all of the properties just described.

Scope of a Variable

As we have noted, the scope of a variable is that portion of your PEEL
program in which you may reference or change the value of the variable.
There are two basic kinds of scope, local and global.

If a variable is specified local to a defcom command or a defun
function, using one of the methods described above, then the scope of
the variable is local. In addition, the value of the variable may be
referenced or changed only by the statements within the command or
function in which the specification occurs. If a local or global
variable with the same name is used in a different PEEL command or
function, then it is treated as a completely different variable (with a
different value and attributes) just as if it had a different name.

If a variable is used without any specification that it is local, then
PEEL considers it to be a global variable. In this case, the scope of
the variable is your entire PEEL program, with the following exception:
any a>mmand or function that specifies a local variable with the same
name as the global variable cannot reference the value of the global
variable. Therefore, the statements of that command or function are
not included in the scope of the global variable.

S e c o n d E d i t i o n 5 - 3 0

WRITING EXTENSIONS

Separation of Functions

In some procedural languages, like Plj/If it is possible for one
procedure to be imbedded inside another procedure. This usually means
that the imbedded procedure "inherits" the local variables of the
procedure in which it is imbedded.

This is not the case in PEEL. All functions and commands are
completely external to one another, and it is not possible for one
function or command to be imbedded in another function or <x>mmand.
Therefore, no inheriting of variables ever takes place in PEEL.

Allocation and Freeing of Local Variables

Whenever a command or function is invoked during execution of your PEEL
program, PEEL automatically allocates space for any local variables
specified within the defcom or defun for that command or function.
This space holds all of the function's properties, including its name,
its value, and its attributes. During execution of that command or
function, whenever that variable name is referenced, it always refers
to the local variable whose space has just been allocated.

When the command or function has completed, any space allocated for the
name, va lue, and at t r ibutes of loca l var iab les is f reed. In
particular, any value assigned to local variables is lost permanently.

RECURSION

Many high-level languages permit you to define recursive functions and
procedures, and PEEL is no exception. Let us see how you can use them.

Recursive Definition of Factorial

In a previous chapter we showed you how to define a simple PEEL program
that computes the factorial function. Now we are going to show a new
PEEL function that also computes factorial, but which does so in a
recursive manner. This example will therefore allow us to illustrate
recursive functions in PEEL. The new PEEL function is based on the so
called recursive definition of the factorial function. This definition
is as follows:

0! = 1
if n>0, then n! = n * (n-1)!

5 - 3 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

This is a two part definition. The first line gives you the value of 0
factorial, namely 1. The second line gives you a rule for computing
your factorial where n is greater than 1: namely, it tells you to
multiply n by the value of (n-1) factorial.

If you have never seen this definition before, it may appear to be a
circular definition, that is, that it defines factorial in terms of
factorial. Actually that is not true. The definition tells us what
the value of 0 factorial is, and, for positive integers, it tells us
what the value of factorial is in terms of the factorial of smaller
integers. Thus, the factorial of a given number is never defined in
terms of itself. For example, how would we use the above definition to
compute the value of 3 factorial? Using the second line of the
definition, we would get the following:

3 ! = 3 * 2 !

This does not give the value of 3 factorial, but it does tell us how to
compute the value of 3 factorial if we know the value of 2 factorial.
Applying the second line of the definition again, we get:

3! = 3 * 2!
= 3 * (2 * 1!)
= 6*1!

This reduces the problem to computing the value of 1 factorial,
Applying the definition again gives us:

3! = 6 * 1!
= 6 * (1 *0!)
= 6*0!

This gives us the value of 3 factorial in terms of the value of 0
fac tor ia l .

However, now we can apply the first line of the recursive definition of
factorial which tells us what the value of 0 factorial is. This gives
us:

3! = 6 * 0!
= 6*1
= 6

Thus, we know the value of 3 factorial is 6

S e c o n d E d i t i o n 5 - 3 2

WRITING EXTENSIONS

Similarly, the recursive definition of factorial given above can be
used to compute the factorial function for any nonnegative integer.

Factorial Command and Function

Here are a PEEL command and a PEEL function that compute factorial
using the recursive definition we have just given:

(defcom compute_a_factor ial
Sdoc "This function computes factorials"
(print (factorial (prompt_for_integer "Type an integer" 1))))

(defun factorial ((n integer)
-local (temp integer)
Streturns integer)

(if (= n 1) (return 1))
(setq temp (* n (factorial (1- n))))
(return temp))

This example creates a defcom and a defun. The function of the defcom
is to prompt the user for an integer and pass it to the factorial
function. The factorial function does the work and ultimately returns
a number that is printed by the defcom.

Look carefully at what happens in the defun. Assume that you are
starting by asking for 101. In the first invocation, n equals 10.
Therefore, the function sets temp to the value of 10 times the number
returned by the second invocation of factorial. However, factorial is
now invoked with a value of 9, meaning that 10! now equals 10 times 9!.

The second time factorial is invoked, n equals 9. The same procedure
is gone through again, so that 9! is interpreted as 9 times 8!. This
continues until n is equal to 1. Only at this time does EMACS actually
begin returning values. In all cases, the very first value returned is
1. However, this is returned to the factorial that invoked it, and the
multiplication of 2 times 1 is performed. This value is returned, then
it is used in the multiplication of 3 times 2, and so on.

Words tend to get in the way when talking about recursion. The
following illustrates the steps taken.

5 - 3 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

(* 10 (factorial 9))
(* 9 (factorial 8))
(* 8 (factorial 7))

(* 2 (factorial 1))
(* 2 1)
(* 3 2)
(* 4 6)

(* 10 362880)

As you can see, two things are happening. The first is that the
factorial is unwound until EMACS gets a factorial that can be computed.
In this case 1!. At this point, EMACS traces its path back until it
reaches the starting point.

Also, at each invocation of factorial, new variables for n and temp are
created. When this happens, the old values are saved.

S e c o n d E d i t i o n 5 - 3 4

Interactive I/O

In traditional programming languages, I/O means taking information and
writing it to a file in a variety of forms. Information can be blocked
or unblocked. There also can be many different kinds of data; for
example, characters, floating-point numbers, integers, double-precision
numbers, complex numbers, and the like. This information can be
written in streams or it can be written as records.

In most cases, the information in the file is structured. For example,
in Pl/I or COBCL, the data might be organized something like:

EMPLOYEE.
2 NAME.

3 LAST-NAME.
3 FIRST-NAME.
3 MIDDLE-INITIAL.

2 ADDRESS.
3 NUMBER-AND-STREET.
3 CITY.
3 STATE.
3 Z I P.

The file, then, consists of information that conforms to a structure.
While the information differs from occurrence to occurrence, the
structure of the information does not change. Moreover, the data types
of each data item can be different.

6 - 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

In EMACS, the information is completely unstructured and the data in
the files must be ASCII data. This means that primitives for
structured input and output do not exist.

Where EMACS has similarities to traditional programming languages is in
the existence of two kinds of I/O: file (buffer) I/O and interactive
I/O. The subject of this chapter is interactive I/O. That is, this
chapter describes how a user talks to EMACS and how EMACS talks back to
the user. Buffer I/O is discussed in the next chapter.

When EMACS displays a file or buffer, it divides the screen into two
parts. The first part is the top 21 lines of the screen. This is
where text appears. The next line is the status line and the remaining
two lines are the minibuffer. It is here that you type responses to
prompts.

THE MINIBUFFER

When typing a command that requires a response (such as query_replace),
EMACS prints a message in the minibuffer that tells you what to type.
It can then read your response and use that response to perform a
function. EMACS also uses this area for printing messages that tell
you what to do. In other cases, this area is used for printing error
messages.

How to Write to the Minibuffer

The following statement writes a message to the minibuffer:

(info_message text)

text can either be characters delimited by double quotation marks or a
string variable.

Two problems can occur when using info_message. The first is that
something else may come along and write over the message before a user
has a chance to read it. For example, two messages are produced by an
extension within a short period of time. The way around this problem
is to use the following statement right after the info_message:

(sleep_for_njTiill iseconds integer)

This puts EMACS to sleep for the number of milliseconds specified. In
this way, you can guarantee that the first message will not be
overwritten too quickly.

S e c o n d E d i t i o n 6 - 2

INTERACTIVE I/O

The second problem is that the text printed by infojnessage can stay
around too long. For example, in the describe function, a message is
printed in the minibuffer. When EMACS returns the user to the place
where describe was invoked, the message should disappear. The way you
get the message to disappear is by writing a null infojnessage to the
screen:

(infojnessage "")

This statement overwrites the old message with a blank line, which, in
effect, removes the message.

Prompting

When creating an interactive program in a language such as COBCL, you
have to write one statement that prints a prompt. To receive data from
the user, you have to write a second statement that accepts information
from the terminal. Because it does not make a lot of sense for a
program to want to accept data without telling the user what should be
typed, EMACS contains several functions whose purpose is to print a
message and accept the information typed at the terminal. These
functions are:

Function

prompt

prompt_f or_str ing

prompt_f or _intege r

prompt_for_symbol

Act ion

Displays a message and returns what the
user types as a string.

Displays a message and returns what the
user types as a string. This function
lets you specify a default value for
the string.

Displays a message and returns what the
use r t ypes as an i n t ege r. Th i s
function lets you specify a default
value for the integer.

Displays a message and returns what the
user types as an atom. This function
lets you specify a default type for the
atom.

6-3 Second Edition

EMACS EXTENSION WRITING GUIDE

Here are two examples:

Example 1:

(setq foo (prompt "What is your name"))

This form would print "What is your name" in the minibuffer. After you
type your name, your name would be assigned to the string variable foo.
Notice that the following is not correct if you intend foo to be used
as an integer variable:

(setq foo (prompt "What is the right margin"))

The reason this does not work is that EMACS assumes that the value of
foo is to be a string where you want it to be a number. What would
work is shown in Example 2.

Example 2:

(setq foo (prompt_for_integer "What is the right margin" 70))

This tells EMACS that the response is an integer. Notice the number
70. This is the value that will be used if someone types a carriage
re tu rn .

For all prompting functions, the side-effect is the printing of the
message and the effect is returning what was typed in response to the
prompt.

Read Functions

Often, you want to read a character from the screen and return this
value. For example, the settab and describe functions both use their
own readers and handle what is typed in their own ways. The two
functions that can be used for this are:

S t a t e m e n t A c t i o n

assurejcharacter Returns the next character typed by the
user and inserts it into the buffer.
This waits for a user to type the
character and returns the character.

S e c o n d E d i t i o n 6 - 4

INTERACTIVE I/O

readjcharacter Reads a character from the terminal.
It returns the resulting character but
does not insert it into the buffer.

Once again, here is the move routine from the tab package. This time,
however, you will see how the reader is actually implemented.

(defun move (-local (movement string)
&returns Boolean)

(infojnessage "Type a space, t, b, f, h, r, ?, or q")
(setq movement (char_to_string (read_character)))
(select movement" " (delete_char)

(insert " ")

otherwise
(infojnessage "unknown response")
(sleep_for_njnilliseconds 1000)
(return true)))

The one new thing here is a conversion statement that converts the
character data returned by read_character into a string.

Conversion Routines

It often occurs that data is in one form and you need it to be in
another, as the last example illustrated. EMACS contains the following
conversion statements:

S t a t e m e n t A c t i o n

char_to_string Converts a character to a string.

integer_to_string Converts an integer into a string.

string_to_integer Converts a string into an integer.

C t o l C o n v e r t s a c h a r a c t e r t o a n i n t e g e r
between 0 and 255.

I t o C C o n v e r t s a n i n t e g e r b e t w e e n 0 a n d 2 5 5
into a character.

I t o P C o n v e r t s a n i n t e g e r b e t w e e n 0 a n d 1 2 7
into a Prime character with the
high-order bit on.

6 - 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

P t o l C o n v e r t s a P r i m e c h a r a c t e r , w h i c h h a s
the high-order bit on, into an integer
in the range 0 through 127.

high__bit_off Turns off the high-order bit in every
character of a string.

h ighjb i t jon Turns on the h igh-order b i t in every
character of a string.

WRITING OVER THE TEXT AREA

Many times, you want to display some text that is too long to fit on
one line of the screen. In this case, what you will want to do is
overlay the text area with message text. An example of this is the
{CTRL-X} {CTRL-B} command that lists buffers.

EMACS contains four commands for overwriting the text area of the
screen. In all cases, the text printed is written on top of existing
text solely because it needs a place to be displayed. This text never
becomes part of the text in the buffer.

S t a t e m e n t A c t i o n

p r i n t P r i n t s i n f o r m a t i o n o n t h e s c r e e n .
EMACS terminates this information with
a carriage return. If you have more
than a screen of data to be printed,
EMACS prints 20 lines, stops, then
prompts for a space to continue.

p r i n l T h i s i s t h e s a m e a s p r i n t e x c e p t t h a t
no carriage return is printed.

init_JLocal_displays Clears the screen before printing
begins. This command does not pause
after printing a screen of data. This
means that information could be lost.
After an init_localj3isplays, the user
must type a {CTRL-L} to clear the
screen.

local_displayjgenerator Begins printing text at point without
clearing the screen. Otherwise, this
is the same as init_local_displays.

In many cases, you really do not want overprinting. Instead, it is
easier to create a buffer, insert the text into that buffer, and then
bring the user to that buffer. This will be discussed in the next
chapter.

S e c o n d E d i t i o n 6 - 6

INTERACTIVE I/O

DEBUGGING PEEL PROGRAMS

If you are attempting to debug a large PEEL program, and you are
confused by PEEL's occasionally somewhat obscure error messages, there
is a convenient debugging facility you can use.

This facility is based on the fact that you may insert any of the
prompt functions into your program at any point. When your PEEL
program reaches that point, it displays the prompt string and waits for
your reply, as you know.

In response to any such prompt, you may type:

{ESC} {ESC}

At that point, PEEL displays a new prompt, "2PL:". You may then type
any PEEL command.

Alternatively, in response to your debugging prompt, you may type

[{ESC}n] {ESC} X

At that point, PEEL displays a new prompt, "2Command:". You may then
type any EMACS command.

The power of this capability lies in the fact that you may stop your
program at any point with a prompt, and then interrogate variables,
change the value of variables, or even invoke other functions, in order
to determine why your PEEL program is not working properly.

6 - 7 S e c o n d E d i t i o n

Manipulating Text
in Buffers

In a buffer, there exist many things you can deal with as "atomic"
entities. For example, at times you might want a character to be the
basic unit; at other times, a word; at still others, an arbitrary
region of text. This becomes more complicated when a context is
applied to these atomic entities. For example, in text, a sentence
terminates with a period, question mark, or exclamation point. In
PL/If a statement must end with a semicolon. In FORTRAN, the statement
terminator is the end of a noncontinued line.

In EMACS, excluding the libraries, the following entities exist:

• Character

• Whitespace

• Words

• Lines

• Regions

• Buffers

The library file EMACS*>EXTENSIONS>S0URCES>TEXT.EM adds the following:

• Clauses

7 - 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

• Sentences

• Paragraphs

These entities are not sensitive to different programming environments.
(Changing the definition on a temporary basis is the function of modes.
See Chapter 9.)

The whitespace entity is exactly what it sounds like. It is an atom
that contains the space character. (This is a value set by the user
libraries in EMACS*. If you do not use the libraries, the whitespace
atom includes the newline character.)

CHARACTERS

A c h a r a c t e r i s t h e s i m p l e s t e l e m e n t t o d e a l w i t h . T h e
character-oriented statements are:

S t a t e m e n t A c t i o n

b a c k j c h a r M o v e s p o i n t b a c k o n e c h a r a c t e r .

fo rward jchar Moves po in t fo rward one charac te r.

rubou t_cha r Removes the cha rac te r p reced ing po in t .

d e l e t e j c h a r R e m o v e s t h e c h a r a c t e r f o l l o w i n g p o i n t .

t w i d d l e I n v e r t s t h e p o s i t i o n o f t h e t w o
characters preceding point.

c u r r e n t _ c h a r R e t u r n s t h e c u r r e n t c h a r a c t e r .

WHITESPACE

Because there are few files that do not contain blanks, PEEL has a
number of statements that make dealing with these blanks much easier.
As mentioned previously, whitespace can have one of two system-defined
definitions. In most cases, you will want it to be equal to just a
space (which is how it is set in the libraries). However, if you need
the system-defined definition, you will have to do this yourself. The
old value has been saved in the variable init_whitespace. Therefore,
to restore it, all you need do is add the following statement to any
extension:

(setq whitespace init_whitespace)

S e c o n d E d i t i o n 7 - 2

MANIPULATING TEXT IN BUFFERS

(The init_whitespace variable has two characters: the space and the
newline character.) The interesting thing about the whitespace
variable is that you can put anything you want into it and then have
the EMACS whitespace functions treat what you put into it as
whitespace.

The following statements manipulate whitespace or blanks:

Statement

skip_back_over_white

skipjover_white

skip_back_to_white

skip_to_white

t r im

delete_whi te_ le f t

delete_white_r ight

delete_white_sides

tab

type_tab

insert tab

Action

Moves point backward so that it is
looking at the first character it finds
that is not in whitespace.

Same as skip_back_over_white except
that it moves forward.

Moves point backward so that it is
looking at the first character it finds
in whitespace.

Same as skip_back_to_white except that
it moves forward.

Removes spaces from the beginning and
the end of a string.

Deletes backward from point until it
reaches a character not in the
whitespace atom.

Deletes forward from point until it
reaches a character not in the
whitespace atom.

Combines both delete_white_left
delete_white_right into one atom.

and

Inserts blanks to the system-defined
tab-stops, which are located every five
spaces. Note that these tabs cannot be
changed. This function is not bound to
{CTRL-I} when you use the TAB library.

Inserts spaces to user-defined tab
positions if point is located after the
last tab stop on the line.

Inserts blanks from point to the next
tab stop.

The last two functions are in the TAB library.

7-3 Second Edition

EMACS EXTENSION WRITING GUIDE

WORDS

In EMACS, a word is defined as an alphanumeric string that is delimited
by a separator. The separators are all punctuation marks, a carriage
return, a space character, or a hyphen. However, an underscore is not
a separator. The basic word operations are:

Statement

forwardjword

backwardjword

delete_word

rubout word

Act ion

Moves point forward one word.

Moves point backward one word.

Kills the word in front of the cursor.

Kills the word behind the word.

LINES

The way that information is presented on the screen is in lines. This
is what most people think of when they look at a screen of information.
Consequently, EMACS contains a number of functions for manipulating
lines, moving from line to line, and checking line status. The
following list presents line commands.

Statement

next line

next line command

prev_l ine

prev_line_command

Act ion

Moves point down one line to the first
character on the next line. If point
is on the last line of the file, moves
point to the beginning of the line. It
also returns a Boolean that indicates
if the operation was successful.

The same as nextJLine except that it
tries to retain horizontal position and
will move down from the last line.
This command does not return a Boolean.

Moves point up a line. This statement
does not retain horizontal position;
tha t i s , po in t becomes the fi rs t
character on the line. It returns a
Boolean that indicates if the operation
was successful.

Same as prev_line except
retains horizontal position.

t h a t i t

Second Edition 7-4

MANIPULATING TEXT IN BUFFERS

begin_l ine

end_line

goto_l ine

k i l l l ine

c r

open_line

current_line

rest_of_line

stem_of_line

first_JLine_p

beginning_of _1 ine_p

end_of_JLine_p

las t_ l i ne_p

Moves point to the beginning of the
current line.

Moves point to the end of the current
l i n e .

Goes to a specific line in the file;
for example, (goto_line 15).

Kills text from point to the end of the
line. If point is at the end of a
l ine, th is command ki l ls just the
carriage return.

Inserts a carriage return.

Inserts a carriage return after point.

Returns the text on the current line.

Returns the text from point to the end
of the line.

Returns the text from the beginning of
the line to point.

Returns true if point is anywhere on
the first line in a buffer.

Re tu rns t rue i f po in t i s a t the
beginning of a line.

Returns true if point is at the end of
a line.

Returns true if point is anywhere on
the last line in a buffer.

CLAUSES

The following statements treat clauses as atomic entities. An
end-of-clause is defined as a terminator followed by a space or
end-of-line. A clause terminator is any one of the following
characters:

. ! ? , ; : () { } []

A beg inn ing -o f - c l ause i s defined as t he t ex t f o l l ow ing an
end-of-clause.

7-5 Second Edition

EMACS EXTENSION WRITING GUIDE

Statement

backward _clause

forward_clause

forwardjkil l_cl ause

backward kill clause

Act ion

Moves point to the beginning of a
clause.

Moves point to the end of a clause.

Kills from point to the end of a
clause. This places the killed text
onto the kill ring.

Kills from the beginning of a clause to
point. This places the ki l led text
onto the kill ring.

SENTENCES

The following statements treat sentences as atomic entities. An
end-of-sentence is defined as being a terminator (. ! ?) followed by
a space or end-of-line. A beginning-of-sentence is defined as the text
following an end-of-sentence.

Statement

backward_sentence

forwardjsentence

forward kill sentence

Action

Moves point to the beginning of a
sentence.

Moves point to the end of a sentence.

Kills from point to the end of a
sentence. This places the killed text
onto the kill ring.

backward_kill_sentence Kills from the beginning of a sentence
to point. This places the killed text
onto the kill ring.

REGIONS

A region is an arbitrary area that is specified by the user or under
program control. Its main function is copying text to a kill buffer.
After it is in a kill buffer, it can be inserted back into a buffer.

Second Edition 1-6

MANIPULATING TEXT IN BUFFERS

The region statements are:

Statement

mark

copy_region

k i l l _ r e g i o n

delete_region

append_to_buf

append_to_f il e

prepend_to_buf

prepend_to_f ile

Act ion

Places a pointer that identifies one
end of the region.

Places the text between mark and point
onto the kill ring.

Places the text between mark and point
onto the kill ring. It also removes
the text from the buffer.

Kills the text between mark and point.
This statement does not put the text
onto the kill ring.

Takes a region and puts it at the end
of a named buffer. If this command is
given an argument, it does not kill the
region first .

Same as append_to_buf, but
the region into a file.

it writes

Takes a region and puts it at the
beginning of a named buffer. If this
command is given an argument, it does
not kill the region first.

Same as prepend_to_buf, but it writes
the region into a file.

The last four commands are contained in the file BUFFER. EM.

CURSORS

As discussed in the EMACS Reference Guide, a mark lets you create an
arbitrary region of textl However, there is little that you can do
with the text. What is needed is a way to assign a region to a
variable and manipulate it in some manner. The PEEL functions that
allow these kinds of interactions all use cursors, which are the
subject of this section.

7-7 Second Edition

EMACS EXTENSION WRITING GUIDE

A cursor is an ent i ty that indicates a place in a buffer.
Specifically, it contains the following information:

1. The name of the buffer

2. The line number

3. The horizontal position (the column) in a line

Like a mark, a cursor has the property that it is bound to a place in a
file. If something occurs that would change this position, the value
of the cursor changes. This means that the cursor always points to the
same place. Suppose we have the following command:

(defcom foo
(withjcursor start

(prev_line 5)
(open_line)
(insert "Foobar")
(go_to_cursor start)))

This function creates a cursor called start, moves up five lines, opens
up the line, and inserts the string "Foobar" into the text. Finally,
the function returns point to the place indicated by start. However,
the value of start has changed because of the insertion. A slight
modification to this command makes it print out the value of the
cursor. The function now reads:

(defcom foo
(withjcursor start

(print start start)
(prev_line 5)
(open_J.ine)
(insert "Foobar")
(go_to_cursor start)
(print start start)))

The difference between the two functions is the print statements. (The
second option to the print statement tells EMACS at what cursor
position it should print the text. In this way, EMACS is inserting
text into the buffer.) When executed, this function might print the
following:

[CURSOR c07 340,1]
[CURSOR c07 342,1]

S e c o n d E d i t i o n 7 - 8

MANIPULATING TEXT IN BUFFERS

Note

When EMACS prints something in square brackets, the quantity
within the brackets has more than one attribute to be
described. In this case, EMACS is telling you that it is
printing information about a cursor, and the three properties
of the cursor are c07, which is the buffer name, 340, which is
the line number, and 1, which is the column number.

As indicated above, the value changes so that the text pointed to by
the cursor remains the same, although its location changes.

The basic difference between a cursor and a mark is that a mark becomes
a permanent placemarker into the file, as long as it is not pushed off
the ring of marks. As point moves, all the marks in the ring must be
updated. Although this is also true of cursors, they do not go into
the ring and are not permanent. This means that when you are done with
them, they leave and EMACS does not incur any additional overhead.

Like all EMACS entities, a cursor can be assigned to a variable. The
following two statements are used:

S t a t e m e n t A c t i o n

cur ren t_cursor Retu rns the va lue o f po in t .

copy_curso r Re tu rns a copy o f a cu rso r.

Notice the difference between the following two statements:

(setq foo current_cursor)
(setq bar (copy_cursor current_cursor))

The first statement equates the variable foo with the current cursor.
This means that as point moves, the value of foo will change. (Notice
that currentjcursor is not within parentheses.) The second statement
equates bar with the value of current_cursor. However, bar equals the
value of current_cursor when the assignment is made. As point moves,
the value of current_cursor changes; however, the value of bar will
not change.

After point has changed, you can return to the cursor position with the
following command:

(go_to_cursor named-cursor)

7 - 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

For example:

(go_to_cursor bar)

The operation of saving the present position and then returning at a
later time is so common that PEEL contains a special form that combines
saving and restoring position into one operation. That is, the
following statement appears over and over again in extensions:

(setq start jposition (copy_cursor current_cursor))
• • •
(go_to_cursor start jposition)

To save you a little effort, the EMACS savejexcursion special form does
both of these operations. It is used as follows:

(savejexcursion
(doj3omething_thatjnoves_cursor))

This form indicates that when the savejexcursion form completes, EMACS
should go back to the position point was at when the form began. The
one peculiarity is that when the form ends, the cursor is sometimes
left in the middle of the screen. Chapter 8 shows how to add another
step, using the window_info command, to ensure that the position of
point does not change.

Now that different ways of assigning cursors have been discussed, the
next step is to look at how to work with text contained in a buffer.
Basically, there are only three operations that can be done:

• Copying text in the buffer

• Inserting text into the buffer

• Deleting text in the buffer

You have already seen these operations in a different context. You are
now ready to use cursors to perform these operations.

S e c o n d E d i t i o n 7 - 1 0

MANIPULATING TEXT IN BUFFERS

Copying Text

It often occurs that an extension needs to extract information from
text contained in a buffer, and then modify it in some way. The
statement that extracts text from a buffer is point_cursor_to_string.
Its syntax is:

(point_cursor_to__string cursor)

As was discussed earlier, cursors can be associated with variables in
two ways: using the copy_cursor statement or using the withjcursor
statement. It does not matter which of the two you use, as the
following examples illustrate:

Example 1:

(with_cursor start
(if (f or ward_se arch "foo")

(setq text_string (point_cursor_to_string start))))

This form performs the following operations:

1. Establishes a cursor named start. This placemarker is the
position of point when the form begins execution.

2. Moves point to the first character after the string foo.

3. Copies into the variable called text_string all the text
from the position marked by start up to point.

The above function is identical to:

(setq start (copy_cursor current_cursor))
(if (forward_.search "foo")

(setq text_string (point_cursor_to_string start)))

The only difference between the two is that in the first example start
only has context within the form. In the second, start has meaning for
the remainder of the extension.

7 - 1 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Example 2:

This example is taken from the view_kill_ring function.

(defun view_kill_ringf (-local (counter integer)
(kill_array array))

(setq kill_array (make_array 'string 11))
;all kill buf names in array

(setq counter 1)
(select_buf ".buffers") ;this is where buffer names

;are stored
(save_excursion

(move_top)
(do_forever

(if (forward_search ".kill.") ;look for kill bufs
(begin_line)
(withjcursor start

(forward_.se arch " ") ; put it into array
(aset (point_cursor_to_string

start) kill_array counter)
(setq counter (1+ counter)))

else
(stop_doing))))

This segment of the view_kill_ring function goes to the EMACS internal
buffer (named .buffers) and then locates all buffers that have the
string .kill, in it. Then, using the withjcursor form, it extracts
the buffer name and puts it into the kill_array variable.

A second useful function is range_to_string. Its syntax is:

(range_to_string cursor_l cursor_2)

The on l y rea l d i f f e rence be tween th i s s ta temen t and
point_cursor_to_string is that the region is bounded by two named
cursors rather than by a cursor and point.

Deleting Text From a Buffer

The statement used to delete text from a buffer is:

(delete_point_cursor cursor)

You use this function in the same manner as point_cursor_to_string.

S e c o n d E d i t i o n 7 - 1 2

MANIPULATING TEXT IN BUFFERS

Inserting Text Into the Buffer

The statement used for inserting text into the buffer is insert. For
example, in the view_kill_ring function, the user is shown the contents
of the kill buffers. A prompt line is printed that gives the user
(among other choices) the option of saving the contents of a
kill buffer. The code for this is:

(if (= response "s")
(move_top)
(withjcursor start

(movejbottom)
(setq save_text (point_cursor_to_string start))))

The yank_kill_text function, compared to the view_kill_ring function,
is simplicity itself. Here it is in its entirety:

(defcom yank_kill_text
sdoc "Inserts text saved by view_kill_ring"
(insert save_text))

The insert commands simply tell EMACS to place the argument into the
buffer at point.

Another useful function is selfjnsert. Its function is to insert one
character into the buffer. It comes in particularly handy when you
want to insert more than one identical character. For example:

(setq indentation (prompt_for_integer "What is the indentation" 0))
(self_insert " " indentation)

The first statement prompts for a number. The second uses this number
to tell EMACS how many spaces to insert. For example, if you had
answered 10, EMACS would insert 10 spaces.

Working With Text Contained in Variables

EMACS contains a variety of primitives that will assist you in working
with text copied into variables. Some of these are unique to EMACS;
others have great similarity to PL/I built-in functions.

1 ~ 1 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

S t a t e m e n t A c t i o n

c a t e n a t e J o i n s t w o s t r i n g s t o g e t h e r .

s u b s t r I s t h e P I / I s u b s t r f u n c t i o n . T h a t i s ,
this function either returns or sets
parts of a string to the indicated
value.

i n d e x I s t h e P L / I i n d e x f u n c t i o n . T h a t i s ,
this function finds where an indicated
string begins in a second string.

t r a n s l a t e I s t h e P I / I t r a n s l a t e f u n c t i o n . T h a t
i s , th i s t rans fo rms the ind ica ted
characters to the character shown.

r e m o v e j c h a r s e t R e m o v e s s p e c i fi e d c h a r a c t e r s f r o m
s t r i ng .

downcase Transforms a string into all lowercase.

upcase Transforms a string into all uppercase.

Here are some examples using these functions.

Example 1: catenate

(setq temp (/ (* (line_number current_cursor) 100) num_lines))
(setq message (catenate "— "

(integer_to_string temp)" % — " message))

The first statement performs a computation that creates an integer
number that is where point is in the file expressed as a percentage of
the total length of the file. The second catenates three items
together and assigns the result to the variable called message. Notice
in particular that the integer_to_string function was used to convert
an integer value to a string. If this conversion were not made, EMACS
would have given you an error message.

Example 2: substr

(setq answer (substr (prompt "Do you wish to continue") 1 1))

This form prompts the user and returns the answer. The substr function
then extracts the first character of the returned reply. Finally, this
character is assigned to answer. Here is a slightly more complicated
version of the same function.

S e c o n d E d i t i o n 7 - 1 4

MANIPULATING TEXT IN BUFFERS

(setq yesjio (substr (prompt "Continue") 11))
(if (I (= yes_.no "y") (= yes_.no "Y"))

(do_something))

In this example, the first character of the reply is saved. This
character is then compared against both "y" and "Y". The two results
are logically OR'd together to see what should be done.

The way the above action is handled in many of the libraries is as
fo l lows:

(defun yesno ((query string)
St returns Boolean
Sdocal (reply string))

(setq reply (downcase (prompt query)))
(do_forever

(select reply
"yes" "y" "ok" "true"

(return true)
"no" "n" "false"

(return false))
(setq reply

(downcase (prompt (catenate query " (Yes or No)"))))))

This allows greater flexibility in handling user responses.

Example 3: index

(setq pos (index name ".EM"))
(if (> pos 0)

(setq name (substr name 1 (- pos 1))))

In this example, the variable called name has been assigned some value.
The index function then looks for the string ".EM" in the variable. If
it is contained in name, pos is set to the position where the .EM would
be. Otherwise, pos is set to 0. The next statement performs an action
based on the value of gos. In this case, the substr function returns
the text from the beginning of the variable to the character right
before .EM.

7 - 1 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Example 4: downcase

(defun lowercasef (-local (word string))
(withjcursor here

(forward_word)
(setq word (downcase (point_cursor_to_string here)))
(deletejpointjcursor here))

(insert word))

This function transforms the word following point to lowercase. It
begins by setting a temporary cursor called here. It then moves point
forward a word. The text between point and here is returned by
point_cursor_toj3tring and then transformed by downcase. The text
between point and here is then deleted and the converted text is
inserted.

S e c o n d E d i t i o n 7 - 1 6

Modes

One problem that occurs when writing commands and systems of commands
is that they become permanent parts of the EMACS environment. In many
instances, what is wanted is a temporary way to redefine the meaning of
EMACS commands and then restore EMACS back to the way it was before
these commands were used. This ability in EMACS is called a mode.

EMACS, as it is shipped, contains a variety of modes. Let us look at
one so that you can gain an appreciation of what a mode can do and is
capable of doing. The explore mode consists of a variety of functions,
each of which performs an action that this mode's designer thought
essential. Here is a modification of the wallpaper command output that
shows what the mode definitions are:

~x-u explorejpop EXPLORE:
~X-U explorejpop EXPLORE:
A explor e_attr ibut es EXPLORE:
?,H explore_help EXPLORE:
C,N explor e_create EXPLORE:
D,G explore_dive EXPLORE:
K explor e_delete EXPLORE:
R explor e_rename EXPLORE:
S explore_spool EXPLORE:
U explorejpop EXPLORE:

Pop from explore sublevel.
Pop from explore sublevel.
Show attributes.
Describe explore.
Copy a file.
Dive from an explore directory,
Delete a file.
Change a file's name.
Spool a file.
Pop from explore sublevel.

This listing indicates that certain keys have been reassigned. For
example, the letter K now calls a command called explorejdelete. This
means that while EMACS is in EXPLORE mode, you cannot use the letter K

8-1 Second Edition

EMACS EXTENSION WRITING GUIDE

to insert a capital letter K. In a similar manner, the other elements
have been redefined. The advantage of this is that the mode designer
has created an interface that is uniquely tailored to the actions being
performed.

The following example illustrates transforming the begin_line function
so that it is useful in COBCL. In COBCL, you would want to write a
command that keeps the user out of columns one through six.

(defcom oobol_begin_line
(if (" (go_to_hpos 7))

(end_J.ine)
(whitespace_to_hpos 7)))

As may be obvious, the manner in which you write commands for a mode is
identical to the way you would write commands in fundamental EMACS.
This simple routine first tries to go to column 7. If it is
unsuccessful, the routine adds spaces so that point is at column 7.

The problem is how to bind this to a key on a temporary basis. This is
the subject of this chapter.

MODES DEFINED

The actions that occur when you type a keystroke that invokes a binding
are not simple. EMACS does not simply take the keybinding and invoke
the command. Instead, EMACS goes through a series of table invocations
and lookups until it finds these commands. The keystrokes that you
type tell EMACS what tables to use. (These tables are called dispatch
tables.) When EMACS is first invoked, the following dispatch tables
e x i s t :

main The main character dispatch mode

x The dispatch table for the {CTRL-X} prefix in the
main dispatch table

esc The dispatch table for ESCAPE in the main dispatch
t a b l e

mbjncde The dispatch table for minibuffers

reader The dispatch table used by the keyboard reader

This is used, for example, to define {CTRL-_} as
help_on_tap. If the function returns a string or
character value, the result is returned in place of
the character actually read. Otherwise, the reader
will read another character from the keyboard.

S e c o n d E d i t i o n 8 - 2

MODES

When you define a mode, you are actually creating a new dispatch table.
When the mode is invoked, it overlays the mode dispatch table on top of
the existing tables. When you type a keystroke command, EMACS first
searches the mode dispatch table. If it finds the keystroke there, it
executes the mode definition of the coinmand. If the function is not
found there, it falls through to the "lower" table and checks to see if
the command exists there. This means that the definitions in the
latest dispatch tables take precedence over commands in previous
dispatch tables. Chapter 9 tells more about getting information from
dispatch tables.

There is nothing to prevent you from using more than one mode at a
time. That is, you could be in a state where LISP, overlay, and fill
modes are all operating at one time. However, when more than one mode
is in force, the order in which they are declared is significant. For
example, in overlay mode, the space character wipes out the character
following point and then inserts a space. The definition of the space
character in fill mode is different. This means that if overlay mode
was the most recent mode, the fill will not work. However, if fill was
the most recent mode, the space character would not overlay the
character in front of point.

Prime does not recommend that you use the EMACS commands that directly
invoke modes. Instead, you should use the functions turn_mode_on and
turn_mode_off. Here is how they are used:

(defcom lisp_on
Sdoc "Set lisp mode"
(turrj_jnode_on (find__mode 'lisp) first))

(defcom lisp_off
Sdoc "Turns off lisp mode"
(turn_jncx3e_off (fino_jnode 'lisp)))

Here are the functions:

(defun turn__mode_on ((mode dispatch)
Stoptional "e (side atom)
-local (modes list))

(turr_jnode_off mode)
(setq modes (buffer_info modes))
(if (eq side 'first)

(buffer_info modes (cons mode modes))
e lse

(buffer_info modes (append modes (list mode)))))

8 - 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

(defun turn__mode_off ((mode dispatch)
-local (modes list))

(do_forever
(setq modes (buffer_info modes))
(if (not (member mode modes)) (return))
(buf fer_info modes (remove mode modes))))

The first part of this example shows the code for turning a mode on.
The function of the fincLmode statement is to return a dispatch table
that is usable for the mode. The function of the turnjnode_off
statement within turn__mode_on is to insure that the mode only exists
once in a buffer. The buffer__info statements insert the dispatch table
into the buffer mode list. Finally, you can also state the order in
which the modes are inserted. If you specify first, as the example
illustrates, the mode just inserted becomes the first one in the search
path through the dispatch tables. Otherwise, the mode just entered
becomes the last one in the search list.

In a similar manner, the turn_jiode_.off function removes a dispatch
table from a buffer's mode list.

BINDING M3DE FUNCTIONS AND COMMANDS

The way you create a keybinding for a mode is nearly identical to the
way you do it for other bindings. The only difference is that you also
have to specify the mode in which the binding will take effect. The
statement that you use is set_jnode_key. Here are two examples:

(set_jnode_key "lisp" ")" "close_paren")

(set_jnode_key "lisp" ""[j?" "balfor")

As you can see, this statement takes three arguments. The first is the
name of the mode, the second is the keybinding, and the third is the
name of the function or command.

After these definitions are created, EMACS will place them into a
dispatch table, ready for use when a mode is invoked.

A different way of setting mode keys is illustrated in the overlay
library, and is described in the dispatch_info discussion in Chapter 9.

S e c o n d E d i t i o n 8 - 4

Information
Commands

EMACS performs and keeps track of a great number of things at the same
time. For example, it retains information about every file, buffer,
and window that it is using. You may find out the state of any of
these things at any time by using the built-in functions described in
this chapter. While this may be useful, what is important is that
EMACS knows what kinds of properties an entity can have. Using these
same functions, you can set these values to something you want. For
example, you may want to present a buffer that is read-only so that auser cannot modify it.

A second category of information commands are those that give
information about names and states, such as date or file_name.

BUFFER_INFO

The buffer_info command either gets or sets information about a buffer.
It takes the form:

(buffer_info any optional-any)

9 - 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

The arguments to this command have the following meaning:

any Either an atom, string, or user atom or user
string that indicates the variable or property to
be examined or set.

optional-any The new value for the property or variable.
These properties are defined below.

The buffer_info command is used to set and/or access buffer values.
When the value is changed, it returns the previous value. The first
argument is the name of the value to be accessed. The second argument
is optional. If it is used, this second argument is the value to
assign. Note that some values, such as the buffer name, cannot be
modified.

The following values (properties) may be accessed:

Value

name

default_f ile

modified

Meaning

The name of the buffer. This is read-only.

The pathname of the default file associated
with the buffer.

If this is true, the buffer is considered
modified. It is indicated by an asterisk on
the status line. The unmodify command sets
t h i s t o f a l s e . S p e c i fi c a l l y, t y p i n g t h e
unmodify command is the same as typing:

(buffer_info modified false)

modes

readjonly

Lists the modes associated with this buffer.
Note that the order of the modes in the list
is significant! Although you can use this
attribute to set the modes, Prime strongly
recommends that you use the turnjnodejon and
turn mode off functions.

Prevents accidental modification of a
For example:

buffer.

(buffer_info read_only true)

This tells EMACS not to let a user enter any
commands that will modify the buffer.

Second Edition 9-2

INFORMATION COMMANDS

changedjok

dont show

two dimensional

fill column

mark

top_cursor

bottomjcursor

user

If this is true, the user is allowed to quit
the editor even if this buffer has been
changed. That is, modification status does
not affect {CTRL-X} {CTRL-C}.

If this is true, the buffer is suppressed in
the {CTRL-X} {CTRL-B} listing. This command is
most useful when creating temporary buffers
that you do not want a user to know about.
For example, the describe command uses two
temporary buffers called .DESCRIBE and
.DESCRIBE.EMACS. Neither of these will ever
appear in the buffer listing.

Controls whether next_line and prev_line move
strictly vertically, and whether forwardjchar
moves to the next line when reaching the end
of the current line. This is normally set and
unset with the 2don and 2doff commands.

Can be set for word-wrapping and related
packages. It is used by the fill-mode
software. It is not used by the wrapping
software.

The current mark position in the buffer.

The beginning of buffer pointer.

The end of buffer pointer.

Used for extended values, as in:

(buffer_info (user commentjcolumn) 40)

This statement associates a variable called
commentjcolumn with the buffer and assigns to
it a value of 40. This value could be used as
follows:

(if (< (cur_hpos)
(buffer_info (user commentjcolumn)))

(whitespace_to_hpos
(buffer_info (user commentjcolumn))))

This form tells EMACS to check the current
position and compare it to the user-defined
comment_column. If the current position is
less than the comment_column, EMACS adds
spaces until the line is the proper length.

9-3 Second Edition

EMACS EXTENSION WRITING GUIDE

DISPATCH INFO

The dispatch_info statement returns information on a mode or dispatch
table. It returns the old value of the property. It takes the form:

(dispatch_info dispatch_table any-1 any-2)

Here any-1 is the key indicating what property to get/set. Thenere any-i is tne Key lnaicanng wnac
optional any-2 argument is the new value.

The dispatch_info function can be used to set an item in the dispatch
table so that a function is bound to a key. A mode value is a dispatch
table that is found using the findjnode function. The argument to
findjnode is either an atom or a string. The returned value is the
mode value. The following modes are predefined:

M o d e D e fi n i t i o n

main The main character dispatch mode.

x T h e d i s p a t c h t a b l e f o r t h e { C T R L - X } p r e fi x i n
the main dispatch table.

e s c T h e d i s p a t c h t a b l e f o r E S C A P E i n t h e m a i n
dispatch table.

mbjnode The dispatch table for minibuffers.

reader The dispatch table used by the keyboard reader.
It is used, for example, to define {CTRL-_} as
help_on_tap. If the function returns a string
or character value, the result is returned in
p l a c e o f t h e c h a r a c t e r a c t u a l l y r e a d .
Otherw ise , the reader w i l l read another
character from the keyboard.

The dispatch_info function can be used to interrogate and modify
dispatch tables. The first argument is a dispatch table (that is, a
mode). The second argument is either the atom "name" (in which case
the name is returned), or it is a character, string, or integer value
identifying the entry to be interrogated and/or modified.

If there is a third argument, it is the new object to be placed into
the dispatch table. In all cases, the old value is returned.

S e c o n d E d i t i o n 9 - 4

INFORMATION COMMANDS

FILE_INFO

The file_info command returns information about a file. It returns the
old value of the property. It takes the form:

(file_info string property any)

Here, string is the pathname of the file, property is an atom explained
below, and the any argument (which is optional) is the new value of the
property.
The values for property are:

V a l u e M e a n i n g

path_name Returns the absolute pathname of the file. For
example:

(file_info (file_name curjcursor) path_name)

This returns the current pathname.

entry_name Returns the entry name of the file.
di rectory _name Returns the name of the directory that contains

the file.

type Returns the type of the file as "none", "file",
"directory", "segdir", or "unknown".

dumped Returns true if and only if the file has been
dumped.

exists Returns true if and only if the file exists.
This is one of the most useful functions. For
example, here is the mod_write_file extension:

(defcom mod_write_file
Sdoc "Write specified file"
Stargs ((place Scprompt "Write file" StString))
(if (= place "")

(setq place (file_name curjcursor)))
(if (file_info place exists)

(if C (yesno
"Do you want to overwrite the file"))
(return)))

(write_file place))

9 - 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

After the prompt for the filename, EMACS checks
to see if the file is in the directory
specified. If it is, EMACS asks permission to
overwrite.

WINDOW_INFO

The window_info command gets or sets information about a window,
also returns the old value of the property. It takes the form:

I t

(window_info property any)

Here property is an atom, and the optional any argument is the new
value for the property.

The values for property are:

Value

top_line

bottom_JLine

left_column

rightjoolumn

is_active

isjnajor

top_J.ine_cursor

showingjnumbers

Meaning

The line number in the buffer at which the
current window is displayed.

The last line on which the window
displayed.

i s

The leftmost column in which the window
appears.

The rightmost column in which the window
appears.

Ind ica tes i f
redisplayed.

the window i s being

Indicates if the window is a major window.
This will usually be true.

This cursor points into the top line of the
text that appears as the top line in the
window. This is one of the most useful
window_info functions, as will be shown
below.

Returns a true or false value that tells if
line numbers are indicated on the screen.
This is used by the #on and #off commands.

Second Edition 9-6

INFORMATION COMMANDS

columnjoffset The value of the horizontal column offset.
This is used, directly or indirectly, by
all commands that scroll the screen
horizontal ly.

last_buffer_cursor The cursor that {CTRL-X} B will go to.

Example:

This example illustrates the append_to_file command:

(defcom append_to_file
Sdoc "Appends current region to a file"
Sena (Stpass count sdefault 1)
(appendf count))

(defun appendf ((count integer)
Stlocal (top cursor)

(place string))
(setq top (window_info top_line_cursor))
(setq place (prompt "What file do you want to append to"))
(savejexcursion

(if (= count 1) ; no arg or 1 is kill before
(kil l_region)

else
(copy_region)) ; else copy

(wi th jio_redi spl ay
(if (file_info place exists) ;check if file exists

(find_file place)
e lse ; i f i t doesn ' t , c reate i t

(go_to_cursor (findjxiffer place))
(write_file place))

(movejDOttom)
(yank_region)
(save_f ile)))

(window_info top_line_cursor top)
(infojnessage "Region appended"))

This somewhat lengthy command is really pretty simple. The defcom, as
others shown before, accepts an argument and transmits it to a
function. The argument's sole purpose is telling the function what to
do. If the argument is 1, the region to be appended is removed from
the buffer; otherwise the region is just copied.

The top variable saves the position of the current top line, so that
when EMACS returns to the buffer (using savejexcursion), the window
will not be shifted. If this command were not there, the line
containing the current cursor would be centered in the window.

9 - 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

OTHER INFORMATION COMMANDS

The EMACS commands that return various kinds of information are:

buffer_name
cpu_time
cur_hpos
cur jcursor
cur rent_handler
current_ l ine
cur rentjna j or jwindow
date
d t

fi le jname
line_number
l is t_dir
maj or _window_count
terminal_type
u i d
user name

These are explained in Appendix A.

Second Edition 9-8

APPENDIXES

EMACS Functions
and Commands

This appendix contains a listing of all standard EMACS functions,
commands, keywords, global variables, and data types.

Note

The entries in this appendix are arranged alphabetically,
except that all names starting with non-alphabetic characters
(#f *# >f If and so forth), as well as those few names starting
with capital letters, are placed at the beginning of the list.

For each command or function, the following information is given:

• A brief summary of what the command or function does.

• A command format, if it is a command. Often, two or more
command formats are given, especially when there is a standard
binding for the command.

• The function format, if it is a function.

• A description of the data types of the arguments.

• The action that EMACS performs when the command or function is
executed.

• If relevant, an additional note or example.

A - 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

• If relevant, the name of the EMACS library in which the source
for the command or function may be found.

Although standard LISP functions are described in this appendix when
they are available in PEEL, you may wish to refer to a LISP manual for
further examples and details.

If the action description of a function states that the value NIL is
returned, that is the same as the null list, ().

In the command formats, if [{ESC}n] is shown, the command does not
ignore a numeric argument. The numeric argument may be specified
either as [{ESC}n] or with any other method for specifying numeric
arguments, such as a multiplier.

If [{ESC}n] is not shown in the command format, the command ignores a
numeric argument.

Command and Function

The # command or function tells whether line-numbering mode is on.

Command Format: {ESC} X #

Function Format: (#)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS displays either "line numbers are off" or "line
numbers are on" in the minibuffer.

The # command returns the value NIL.

#off Command

The #off command turns off line-numbering mode.

Format: (#off)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS turns off automatic line-numbering mode, and does
not show line numbers at the left of the window.

The #off function returns the value NIL.

#on Command

The #on extended command turns on line-numbering mode.

Format: (#on)

S e c o n d E d i t i o n A - 2

EMACS FUNCTIONS AND COMMANDS

Argument: A numeric argument, if specified, is ignored.

Action: EMACS turns on automatic line-numbering mode, so that line
numbers are displayed to the left of the window.

The #on function returns the value NIL.

St Function

The St function is an abbreviation for the "and" function.

Stargs Keyword

The Stargs keyword is an abbreviation of the &arguments keyword.

Starguments Keyword

The &arguments keyword starts the argument definition section of a
defcom. (See defcom for the complete syntax.)

&char_arg Keyword

T h e S t c h a r _ a r g k e y w o r d i s a n a b b r e v i a t i o n f o r t h e
Stcharacter_argument keyword.

&character_argument Keyword

The &character_argument keyword is used with the defcom function to
allow the passing of the keystroke that invoked the command. (See
the description of defcom for the syntax.) This keyword is not
particularly useful, because the character_argument function can
obta in and return th is in format ion regard less of whether
Stcharacter_argument has been specified.

Sdoc Keyword

The sdoc keyword is an abbreviation of the sdocumentation keyword.

Sdocumentation Keyword

The Sdocumentation keyword is used in the defcom command to allow
you to specify a string description of the command. It is used in
help facilities, such as apropros and explain_key. (See defcom.)

A - 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Steval Keyword

The Steval keyword reverses the effect of the squote keyword in a
defun function definition, and specifies that all the following
arguments are to be evaluated. (See defun.)

Stignore Keyword

The Stignore keyword is used in a defcom to specify that numeric
arguments to the command being defined are to be ignored.

-integer Keyword

The Stinteger keyword is used in a defcom with Scargs to specify that
an argument has the integer data type. (See defcom for the
complete syntax.)

-local Keyword

The -local keyword is used in a defun definition to specify that
there are no further arguments in the function header, and that the
remaining entries are local variables used only within the function
being defined.

Smacro Keyword

The sanacro keyword is used in a defun definition to specify that
the function returns a list that should be evaluated in the calling
context. (See defun for details.)

Stna Keyword

The Stna keyword is an abbreviation of S_iumeric_argument.

Stnumeric_arg Keyword

The &numeric_arg keyword is used in a defcom to specify how a
numeric argument to the command is to be handled.

Stoptional Keyword

The Stoptional keyword is used in a defun function header to specify
that all the following arguments are not required. Optional
arguments not specified when the function is invoked are
initialized to NIL.

S e c o n d E d i t i o n A - 4

EMACS FUNCTIONS AND COMMANDS

Stpass Keyword

The &pass keyword is used in a defcom to specify the name of a
local variable to which the value of the numeric argument is to be
assigned.

&prefix Keyword

The &prefix keyword is used in a defcom to indicate that the last
invocation character is to be inserted into the buffer as a side
effect of the command.

Stprompt Keyword

The Stprompt keyword is used in a defcom to cause a local variable
(defined with Stargs) to be prompted for, if it is not specified in
the command's invocation.

Stquote Keyword

The Stquote keyword is used in the argument list of a defun to
specify that EMACS should simply bind all the following arguments,
without attempting to evaluate them, when the function is invoked.
The Steval keyword reverses the effect of a previous Stquote keyword.

Strepeat Keyword

The srepeat keyword is used with Stnumeric_arg in a defcom to
specify that the numeric argument to the command indicates the
number of times that the body of the defcom code should be
executed. (See defcom.)

Format: Stna (Strepeat)

Strest Keyword

The Strest keyword is used in the argument list of a defun to tell
EMACS to take the rest of the arguments and put them into a list.

Format: Strest (v list)

Argument: The argument v is any PEEL variable name. As shown in
the format, it must be given the list data type.

Example: Strest (r list)

When the function is invoked, all the following arguments will be
placed into a list assigned to the local variable r.

A - 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Streturns Keyword

The &returns keyword is used in a defun to specify the data type
returned by the function being defined. This is the data type of
the effect of the function, not any side-effect. The value
returned by the function is specified by the return function.

-string Keyword

The &string keyword is used in a defcom with Scargs to specify that
an argument has the string data type.

Stsymbol Keyword

The Stsymbol keyword is used with &args in a defcom to specify that
the data type of the argument is a symbol.

* Function

The * arithmetic function returns the product of its arguments.

Format: (* xl [x2 ... x8])

Arguments: * takes one through eight integer arguments.

Action: The * function returns an integer value representing the
product of its arguments. If there is only one argument, the value
of that argument is returned.

Example: The function

(* 3)

returns the integer value 3, while

(* 3 4 5)

returns the integer value 60, obtained by multiplying together 3,
4, and 5.

*_list Function

*_list is a LISP function that constructs a list of its arguments,
much like the list function. The last argument becomes the cdr of
the last cons used in constructing the list. It is an extended
version of cons, and is thus useful for adding elements to the
front of a list.

Format: (*_list argl arg2 [arg3...arg8])

S e c o n d E d i t i o n A - 6

EMACS FUNCTIONS AND COMMANDS

Arguments: *_list takes two to eight arguments of any data type.

Examples: The following expression

(*_list 'a 'b 'c 'd)

is equivalent to

(cons 'a (cons 'b (cons 'c 'd)))

Both construct the following value:

(a b e . d)

If d is a list (i j k), then the expression becomes:

(*_list 'a 'b 'c '(i j k))

This adds three elements to the front of the list (i j k),
const ruct ing:

(a b c i j k)

*catch Function

The *catch function, derived from MACLISP, corresponds roughly to a
non- local-goto or an on-uni t defini t ion in other h igh- level
languages.

Format: (*catch t sl)

Arguments: The argument t is an atom (called a "tag"), usually
quoted.

The argument sl is a PEEL statement.

Action: The *catch function returns a value whose data type
depends upon execution of the argument.

If multiple PEEL statements are required at sl, use a progn at sl,
and place the multiple statements within it. The value returned by
a progn is the value of the last statement in the progn.

EMACS executes the argument sl, stopping if a function of the form

(*throw t v)

is executed.

If no such *throw function is executed, then *catch returns the
value of the function sl.

A - 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

If a *throw function in the format just shown is executed, then
execution of sl is terminated immediately, and *catch returns the
value v.

Note: The *catch function is like the catch function except that
the argument order is different. The order of arguments in *catch
is much easier to use.

Examples: Consider the following:

(*catch 'hello

(if"(> a 0) (*throw 'hello "error"))
• • •

a)

If the value of a is positive at the time the if statement is
executed, then execution of *catch will terminate, returning the
value "error". Otherwise, execution will continue, and unless
stopped for some other reason, will continue to the form a, and
*catch will return that value.

The following example shows multiple *catches and *throws, and the
use of progn.

(print (*catch 'foo
(progn (setq a (prompt "hello"))

(if (= a "a") (*throw 'foo 20))
(print (*catch 'bar

(progn (setq b (prompt "goodbye"))
(if (= b "b") (*throw 'foo 30))
(if (= b "c") (*throw 'bar 100))
))))))

Note that you can nest catches and throws. For example, an outer
*catch might catch "quit" throws, and an inner one might catch
argument errors.

*throw Function

The *throw function is a standard LISP function that provides a
function similar to invocation of an on-unit in other languages.

Format: (*throw t v)

Arguments: The argument t must be an atom, usually quoted. The
argument v can have any data type.

Action: The function is legal only within the argument list of
*catch with the tag t. (See the description of *catch for further
d e t a i l s .)

S e c o n d E d i t i o n A - 8

EMACS FUNCTIONS AND COMMANDS

Note: The *throw function is like the throw function except that
the argument order is different.

+ Function

The + arithmetic function adds together its arguments.

Format: (+ xl [x2 ...x8])

Arguments: The + function takes at least one argument and no more
than eight arguments. All arguments must have the integer data
type.

Action: The + function returns an integer value. If there is only
one argument, the value of that argument is returned. If there is
more than one argument, then + adds together all the arguments and
returns their sum.

Example: The function

(+ 3)

returns the value 3, while the function

(+3 4 5)

returns the value 12, equal to the sum of 3, 4, and 5.

- Function

The - arithmetic function either subtracts two arguments or negates
a single argument.

Format: (- x [y])

Arguments: The argument x, and the argument y if specified, must
be integer values.

Action: The - function returns an integer value. If y is n°t
specified, - returns the value of -x. If y_ is specified, - returns
the value of (x-y).

Examples: The function (- 2) returns the value -2, while the
function (-10 5) returns the value 5.

/ Function

The / arithmetic function performs integer division.

Format: (/ x y)

A - 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Arguments: Both x and y_ must be integer values.

Action: The / function returns an integer value. The value
returned is (x/y), truncating if necessary.

Note: Truncation is always in the direction toward 0. Therefore,
for example, (/ 24 5) and (/ -24 -5) each return the value 4, while
(/ -24 5) and (/ 24 -5) each return the value -4.

1+ Function

The 1+ arithmetic function returns the value obtained by adding one
to its argument.

Format: (1+ x)

Argument: The argument x must be an integer.

Action: The 1+ function returns the integer value (x+1).

Note: The following two expressions are equivalent:

(1+ x)
(+ x 1)

1- Function

The 1- ari thmetic function returns the value obtained by
subtracting one from its argument.

Format: (1- x)

Argument: The argument x must be an integer.

Action: The 1- function returns the integer value obtained by
computing (x-1).

Note: The following two expressions are equivalent:

(1- x)
(- x 1)

2d Command and Function

The 2d extended command or function tells whether two-dimensional
mode is on. (See 2don.)

Command Format: {ESC} X 2d

S e c o n d E d i t i o n A - 1 0

EMACS FUNCTIONS AND COMMANDS

Function Format: (2d)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS displays either "2d is off" or "2d is on" in the
min ibu f fe r.

2doff Command and Function

The 2doff extended command or function turns off two-dimensional
mode (see 2don).

Command Format: {ESC} X 2doff

Function Format: (2doff)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS turns off two-dimensional mode.

2don Command and Function

The 2don extended command or function turns on two-dimensional
mode.

Command Format: {ESC} X 2don

Function Format: (2don)

Arguments: A numeric argument, if specified, is ignored.

Action: EMACS turns on two-dimensional mode. In this mode, you
may use the cursor commands to move your cursor anywhere on the
screen, even where there are no characters in the buffer. If you
insert a character on the screen at a point on a line where
characters to the left of the point have not previously existed,
then EMACS automatically inserts blanks on the line up to that
p o i n t .

<r <=r =f ~=r >r >= Functions

These relational operators test the relationship between their
arguments.

Format: (op argl arg2), where the op is one of the following: <,
<=, =, ~=, >, or >=.

Arguments: Each of the relational operators takes two arguments.
Both arguments must have the same data type, and the common data
can be any.

A - l l S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Action: Each of the relational operators returns a Boolean value,
depending upon the result of the comparison. The < function
returns true if the first argument is less than the second, and
false otherwise. Similarly, the other functions compare and test
as follows: <= is the less than or equal comparison; = is the
equal comparison; ~= is the not equal comparison; > is the
greater than comparison; and >= is the greater than or equal
comparison.

If the two arguments are integers, then an ordinary integer
comparison is performed.

If the arguments are strings, they are compared according to the
rules to the ASCII collating sequence, after padding the string to
the length of the longer one with blanks, if necessary.

If the arguments are Boolean, then true is considered to be less
than false.

If the arguments are cursor values, then they must be in the same
buffer, and one cursor value is considered to be smaller than
another cursor value if it precedes the second one in the buffer.

Ctol Function

The Ctol conversion function converts a character to an integer
value.

Format: (Ctol c)

Argument: The argument c must have the character or string data
type.

Action: The Ctol function returns an integer value. The value is
greater than or equal to 0 and less than or equal to 255. The
value returned is equal to the position of the character argument c
in the ASQI collating sequence.

If the argument c is a string, then the value for first character
of c is returned.

ItoC Function

The ItoC function converts an integer between 0 and 255 into a
character.

Format: (ItoC x)

Argument: The argument x must have the integer data type.

S e c o n d E d i t i o n A - 1 2

EMACS FUNCTIONS AND COMMANDS

Action: The ItoC function returns a character value. The
character returned is equal to the character in position x modulo
256 of the ASQI collating sequence.

ItoP Function

The ItoP conversion function converts an integer between 0 and 127
into a Prime character with the high-order bit on.

Format: (ItoP x)

Argument: The argument x must be an integer.

Action: The ItoP function returns a character value. Given an
argument x,

(ItoP x)

returns the same value as

(ItoC (+ (modulo x 128) 128)

NL Global Variable

NL is a global variable having the character data type. The value
of NL is the new-line character. You may imbed the value of NL in
s t r i ngs .

Ptol Function

The Ptol conversion function converts a Prime character, having the
high bit on, into an integer between 0 and 127.

Format: (Ptol c)

Argument: The argument c must be a character value, usually with
the high bit on.

Action: The Ptol function returns an integer value between 0 and
127. Given an argument c, the value of

(Ptol c)

is c with the high bit off, given by

(modulo c 128)

If the argument c is a string, then the value for first character
of c is returned.

A - 1 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Function

The ~ function is an abbreviation for the not function.

~= Function

(See the = function listed under '<'.)

/sp_prev_line_command Command

(See prev_line_command.)

"c_j_uote_command Command

(See quote_command.)

^s_forward_searchjcommand Command

(See forward_.search_command.)

I Function

The | function is an abbreviation for the or function. (See the or
function for further information.)

abort_command Command

The abort_command command and function aborts a command.

Function Format: (abort_command)

Command Format: {ESC} X abortjcommand or {CTRL-G}

Argument: A numeric argument, if specified, is ignored.

Action: The abort_command command permits the current command to
be aborted. For example, you may use (abortjcommand) in a PEEL
program at any point to terminate execution at that point. EMACS
causes the terminal to beep and returns you to command level.

The (abortjcommand) function does not return any value.

abortjninibuffer Command

(See abort_command.)

S e c o n d E d i t i o n A - 1 4

EMACS FUNCTIONS AND COMMANDS

abortjorjexit Command

(See abort_command.)

af Function

The af function inserts the results of an active PRIMOS command
function invocation into the buffer at the current cursor position.

Format: (af s)

Argument: The argument s must have the string data type.

Action: The af function inserts the result of an active PRIMOS
function invocation into your text buffer at the current cursor
position. The function returns NIL as its value.

Example: The function

(af "[calc 4+5]")

inserts the string "9" into your text buffer.

alljnodesjoff Command

The alljnodesjoff command turns all modes off for the current
b u f f e r .

Format: {ESC} X alljnodesjoff

Argument: A numeric argument, if specified, is ignored.

Action: EMACS turns all modes off in the current buffer. Note
that any side-effects of turning a mode on (such as 2don in overlay
mode) will not be cancelled.

and Function

The and function is a Boolean operator that returns the logical
"and" of its arguments.

Format: (and bl b2 [b3 ... b8])

Arguments: The and function takes at least two and no more than
eight arguments. All arguments must have the Boolean data type.

Action: The and function returns a Boolean value computed by
taking the logical "and" of all of its arguments. That is, the and
function returns the value true if the value of all its arguments
is true; otherwise it returns the value false.

A - 1 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Note that all arguments are evaluated, regardless of whether any
one is false, and the order of evaluation is unspecified.

any Data Type

A variable with the any data type can take on any value of any data
type supported by PEEL. Note that all undeclared global variables
have by default the any data type.

append Function

The append function is a standard LISP function that appends all
the items of one list to the end of another list.

Format: (append lstl lst2)

Arguments: Both lstl and 1st2 must be lists.

Action: The append function returns a value with the list data
type. The value is computed by appending all the items in lst2 to
the end of the items in lstl.

Example: The function

(append ' (abe) ' (de f))

returns the list (a b c d e f).

Note: The append function does not change the value of either list
lstl or lst2.

append_to_buf Command and Function

The append_to_buf command or function appends the current region to
a buffer.

Command Format: [{ESC}n] {ESC} X append_to_buf
or
[{ESC}n] {CTRL-X} A

Function Format: (append_to_buf [n [b]])

Argument: The argument n, if specified, must be an integer value.
The argument b, if specified, must be a string value.

Action: If the argument b is not specified, then EMACS prompts you
with "buffer name:". The string that you type is assigned to the
variable b.

S e c o n d E d i t i o n A - 1 6

EMACS FUNCTIONS AND COMMANDS

The string variable b is interpreted as a buffer name. EMACS
appends the current region to that buffer. This means that the
text in the current region is inserted at the end of that buffer.

If n is not specified, then the text in the current region is
deleted, meaning that the append operation is in effect a move. If
n is specified, then the text is copied, and the marked region is
not deleted.

append_to_file Coinmand

The append_to_file command appends the current region to a file.

Format: [{ESC}n] {ESC} X append_to_file
or
[{ESC}n] {CTRL-X} {CTRL-Z} A

Argument: The argument n, if specified, must be an integer value.

Action: The append_to_file command prompts you for a file name,
and then appends the current region to that file. This means that
the text in the current region is inserted at the end of that file.

If the argument n is not specified, then EMACS deletes the text in
the current region. This means that the append operation is, in
effect, a move.

If the argument n is specified, then EMACS copies the text without
deleting the marked region.

apply Function
The apply function is a standard LISP function that applies a
function to a list of arguments.

Format: (apply f 1st)

Arguments: The value of f must be a function. The value of 1st
must be a list.

Action: EMACS applies the function f to the list of arguments in
1st.

Example:

(setq add_elements (fsymeval '+))
(setq scores '(1 2 5))
(apply addjelements scores)

The apply function returns the value 8, obtained by computing the
value of (+125). (See fsymeval.)

A - 1 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

apropos Command and Function

The apropos command or function provides an extended help facility
that retrieves a list of commands that match a string.

Command Format: {ESC} X apropos

Function Format: (apropos [s])

Argument: A numeric argument, if specified, is ignored.

The argument s, if specified, must be a string value.

Action: If s is not specified, then EMACS prompts you, with the
prompt "Apropos:" in the minibuffer, for a string s.

EMACS goes through all its handlers (defcoms or built-in handlers)
that have been loaded and looks for a match between s and either
the name of the handler or its documentation string.

EMACS also looks for key bindings for any functions bound by the
previous search.

All this information is displayed on your screen.

The apropos function returns NIL.

Note: When you use defcom to define a new command, you may use the
Sdoc operation to specify a documentation string for the new
command. The apropos command or function displays that
documentation string for an appropriate argument string s.

aref Function

The aref function returns the value of an array element.

Format: (aref a x)

Argument: The argument a must be an array, and is usually a
variable name to which an array has been bound by means of setq and
make_array. The value of x must be a nonnegative integer less than
the number of elements in the array (arrays are indexed from 0).

Action: If the value of x is 0, then aref returns the first
element of the array a. In general, aref returns that element of
the array a with index x, that is, the (x+l)st element of the array
a.

~ >

S e c o n d E d i t i o n A - 1 8

EMACS FUNCTIONS AND COMMANDS

array Data Type

A value with the array data type is created by means of the
make_array function.

arrayjdimension Function
The arrayjdimension function returns the number of elements in an
array.
Format: (arrayjdimension a)

Argument: The argument a must be an array. Usually a is a
variable to which an array has been bound by means of setq and
make_array.
Action: The arrayjdimension function returns an integer value
equal to the number of elements in the array.

Example: The function

(arrayjdimension (make_array 'integer 20))
returns the value 20.

array_type Function

The array_type function returns the data type of an array.

Format: (array_type a)

Arcnjment: The argument a must be an array. Usually a is a symbol
to which an array value has been bound by means of setq and
make_array.

Action: The array_type function returns an atom specifying the
data type of the array. The data type is the same as was specified
in the make_array function that created the array.

aset Function

The aset function stores a value into an array element.

Format: (aset van)

Argument: The argument a must be an array value. Usually a is a
variable to which an array value has been bound by means of the
setq and make_array functions.

A - 1 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

The argument v must have a value whose data type is the same as the
data type of the array a, as specified in the make_array function
that created the array.

The argument n must have a non-negative integer value less than the
number of elements in the array.

Action: If the value of n is 0, then aset sets the first element
of the array a to the value y. In general, aset sets the value of
the (n+l)st element of the array a to the value y.

The aset function returns the value v.

assoc Function

The assoc function looks up an item in a LISP association list.

Format: (assoc k 1st)

Argument: The argument 1st must be an association list, as
described below. The argument k may have any data type.

Action: An association list is really a list of lists. The car of
each sublist is called the "key", and the cdr of each sublist is
the value associated with the key. The assoc function returns the
sublist associated with the key k in the association list 1st. If
key k is not found in the association list, assoc returns NIL.

Example: The following example illustrates various uses of the
assoc function:

(setq joe '((name "Joe Smith") (age 27)
(phone "234-1234")))

(assoc 'phone joe) -> (phone "234-1234")
(assoc 'age joe) -> (age 27)
(assoc ' quux j oe) -> ()

assure_character Function

The assurejcharacter function returns the next keyboard character
typed without removing it from the input buffer.

Format: (assurejcharacter [raw])

Argument: The argument raw, if specified, must be the atom raw.

Action: The assure jcharacter function waits until there is a typed
character in the input buffer. It then returns the value of that
character, without removing that character from the input buffer.

S e c o n d E d i t i o n A - 2 0

EMACS FUNCTIONS AND COMMANDS

If the argument raw is specified, then a "raw read" is performed,
and no special handling, such as "help on tap", is supported.

Example: The function

(assure_character raw)

does a raw read to input the next character from the terminal
without removing it from the input buffer.

at_white_char Function

The at_white_char function returns a Boolean value indicating
whether the cursor is at a whitespace character.

Format: (at_white_char)

Arguments: None.
Action: The at_white_char function returns a Boolean value. The
value is true if the character to the right of the cursor is in
the string bound to the atom whitespace; otherwise, it is false.

atom Function

The atom function is a standard LISP function that indicates
whether or not the argument is an atom.

Format: (atom v)

Argument: The argument y may have any data type.
Action: The atom function returns a Boolean value. The value is
true if the argument y is not a list structure, that is, neither a
cons nor NIL.

autoload_lib Function
The autoload_lib function fasloads a file and executes the given
command.

Format: (autoload_lib c s)

Arguments: The argument c must be an atom representing the name of
a command. The argument s must be a string.

Action: The string specified by the argument s must be a PRIMOS
pathname for a package containing a redefinition of the atom
specified by the argument c. EMACS opens for input the filename
obtained by adding the suffix .EFASL to the string s, and then
loads and executes that file as a fasload file, thereby executing

A - 2 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

the command given by the atom c. If EMACS cannot find the .EFASL *^
file, it looks for the corresponding .EM file instead, and compiles
it with the pi command.

The autoload_lib function returns the value NIL.

Note: This function is useful when you have an external command
for which you wish to defer the loading until it is actually used.

backjchar Command and Function

The back_char command or function moves the cursor back by a
specified number of characters.

C o m m a n d F o r m a t : [{ E S C } n] { E S C } X b a c k _ c h a r ^ * V
o r "
[{ESC}n] {CTRL-B}

Function Format: (back_char [n])

Argument: The argument n, if specified, must be an integer.

Action: If n is not specified, then let n equal 1.

I f t h e v a l u e o f n i s 0 , t h e n n o a c t i o n t a k e s p l a c e . * ^

If the value of n is positive, then the cursor is moved back n
characters, stopping if the beginning of the buffer is reached.

If the value of n is negative, then the cursor is moved forward
(-n) characters, stopping if the end of the buffer is reached.

The backjchar function returns the value NIL.

backjpage Command and Function

The back_page command or function moves the window back a group of
lines, usually 18.

Command Format: [{ESC}n] {ESC} X back-page
or
[{ESC}n] {ESC} V

Function Format: (back_page [n])

Argument: The argument n, if specified, must be an integer.

Action: If n is not specified, let n equal 1.

I f t h e v a l u e o f n i s 0 , n o a c t i o n t a k e s p l a c e . ^

S e c o n d E d i t i o n A - 2 2

EMACS FUNCTIONS AND COMMANDS

If the value of n is positive, the window is moved back n pages,
stopping if the beginning of the buffer is reached. The cursor is
left at approximately the middle of the window.

If the value of n is negative, the window is moved forward (-n)
pages, stopping if the beginning of the buffer is reached. The
cursor is left at approximately the middle of the window.

The backjpage function returns the value NIL.

back_tab Command and Function

The back_tab command or function moves the cursor back by a
specified number of tab stops.

Command Format: [{ESC}n] {ESC} X back_tab

Function Format: (back_tab [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, the cursor is moved back n tab stop
positions, stopping if the beginning of the line is reached.

If the value of n is negative, the cursor is moved forward (-n) tab
stop positions. If the end of the line is reached, EMACS
automatically fills the end of the line with blank characters, up
to the desired tab stop position.

The back tab function returns the value NIL.

back_to_nonwhite Command and Function

The back_to_nonwhite command or function puts the cursor onto the
first nonwhite character on a line. (A nonwhite character is any
character not bound to the atom whitespace.)

Command Format: [{ESC}n] {ESC} X back_to_nonwhite
or
[{ESC}n] {ESC} M

Function Format: (back_to_nonwhite [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

A - 2 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

If n does not equal 0 or 1, do the following:

• If n is greater than 1, execute

(next_line (1- n))

• If n is less than 0, execute

(next_line n)

EMACS then moves the cursor back or forward to the first
nonwhite character on the current line. If there are no
nonwhite characters on the line, EMACS moves the cursor to the
end of the line.

The back_tojionwhite function returns the value NIL.

backjword Command and Function

The backjword command or function moves the cursor back by a
specified number of words.

Command Format: [{ESC}n] {ESC} X backjword
or
[{ESC}n] {ESC} B

Function Format: (backjword [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is position, EMACS moves the cursor back to the
nth occurrence of a character that begins a word, as specified by
the list of characters in the whitespace string. (That is, EMACS
moves the cursor back n words, and leaves it at the first character
on that word.) Cursor movement stops if the beginning of the
buffer is reached.

If the value of n is negative, then EMACS moves the cursor forward
to the nth occurrence of a character that immediately follows a
word. (That is, EMACS moves the cursor ahead n words, leaving the
cursor on the whitespace character immediately following the end of
the word.) Cursor movement stops if the end of the buffer is
reached.

The backjword command returns the value NIL.

Note: The tokenjchars atom contains the list of characters that
define a word or token.

S e c o n d E d i t i o n A - 2 4

~ >

EMACS FUNCTIONS AND COMMANDS

backward jclause Command and Function

The backwardjclause command or function moves the cursor back by a
specified number of clauses.

Command Format: [{ESC}n] {ESC} X backwardjclause
or
[{ESC}n] {CTRL-X} {CTRL-Z} {CTRL-A}

Function Format: (backwardjclause [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, EMACS moves the cursor back to the
character preceding the nth occurrence of a character that delimits
a clause. (That is, EMACS moves the cursor back n clauses, and
leaves it at the character preceding the last clause delimiter.)
Cursor movement stops if the beginning of the buffer is reached.

If the value of n is negative, EMACS moves the cursor forward to
the nth occurrence of a character that delimits a clause. (That
is, EMACS moves the cursor ahead n clauses, leaving the cursor on
the character inroediately following the last clause delimiter.)
Cursor movement stops if the end of the buffer is reached.

The backwardjclause command returns the value NIL.

Note: The characters delimiting a clause are contained in the
global string variable clausejscan_table$.

backwardjclausef Function

The backwardjclausef function moves the cursor back by a specified
number of clauses, and returns a Boolean value indicating whether
the operation was successful.

Format: (backwardjclausef [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

The backward_clausef function returns a Boolean value.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no cursor movement takes place, and
backwardjclausef returns the value true.

A - 2 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

If the value of n is positive, EMACS moves the cursor back to the
character preceding the nth occurrence of a character that delimits
a clause. (That is, EMACS moves the cursor back n clauses, and
leaves it at the character preceding the last clause delimiter.)
Cursor movement stops if the beginning of the buffer is reached.
If the beginning of the buffer is reached, backwardjclausef returns
the value false; otherwise, backwardjclausef returns the value
true.

If the value of n is negative, EMACS moves the cursor forward to
the nth occurrence of a character that delimits a clause. (That
is, EMACS moves the cursor ahead n clauses, leaving the cursor on
the character following the last clause delimiter.) Cursor
movement stops if the end of the buffer is reached. If the end of
the buffer is reached, backwardjclausef returns the value false;
otherwise, backward_clausef returns the value true.

Note: The list of characters delimiting a clause may be found in
the global string variable clause_scan_table$.

backward_kill_clause Command and Function

The backward_kill_clause command or function kills text from the
current cursor position to the beginning of the specified clause.

Command Format: [{ESC}n] {ESC} X backward_kill_clause
or
[{ESC}n] {CTRL-X} {CTRL-Z} {CTRL-H}

Function Format: (backward_kill_clause [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If the value of n is 0, no action takes place.

If the value of n is not 0, EMACS performs the following
operations:

(mark)
(backwardjclause n)
(forwardjchar 2)
(kil l_region)

Notice that when n is positive, backward_kill_clause kills all
characters back to the character following the last clause
delimiter found by the backwardjclause operation.

S e c o n d E d i t i o n A - 2 6

EMACS FUNCTIONS AND COMMANDS

Caution

If n is negative, backward_clausef deletes all characters
up to and including the last clause delimiter found, plus
two additional characters of the following clause.

The backward kill clause function returns the value NIL.

backward_kill_line Command and Function

The backward_kill_line command or function kills all text from the
current cursor position back to the beginning of the line.

Command Format: [{ESC}n] {ESC} X backward_kill_line
or
[{ESC}n] {CTRL-X} {CTRL-K}

Function Format: (backward_kill_line [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 0.

EMACS deletes all characters from the current cursor position back
to the beginning of the line. In addition, if the value of n is
not 0, EMACS deletes the newline character preceding the beginning
of the line.

The backward kill line function returns the value NIL.

backward_kill_sentence Command and Function

The backward_killj3entence command or function kills text from the
current cursor position to the beginning of the specified sentence.

Command Format: [{ESC}n] {ESC} X backward_kill_sentence
or
[{ESC}n] {CTRL-X} {CTRL-H}

Function Format: (backward_kill_sentence [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

A - 2 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

If the value of n is not 0, EMACS performs the following actions:

(mark)
(back_sentence n)
(k i l l _ reg ion)

The backward kill sentence function returns the value NIL.

backwardjpara Command and Function

The backward jpara command or function moves the cursor back by a
specified number of paragraphs.

Ctommand Format: [{ESC}n] {ESC} X backward_para
or
[{ESC}n] {CTRL-X} [

Function Format: (backwardjpara [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, EMACS moves the cursor back to the
character preceding the nth occurrence of a character that delimits
a paragraph. (That is, EMACS moves the cursor back n paragraphs,
and leaves it at the character preceding the last paragraph
delimiter.) Cursor movement stops if the beginning of the buffer
is reached.

If the value of n is negative, EMACS moves the cursor forward to
the (-n)th occurrence of a character that delimits a paragraph.
(That Is, EMACS moves the cursor ahead (-n) paragraphs, leaving the
cursor on the character immediately following the last paragraph
delimiter.) Cursor movement stops if the end of the buffer is
reached.

The backwardjpara command returns the value NIL.

Note: Paragraphs are defined as lines beginning with a period, a
blank line, or a space.

backward_sentence Command and Function

The backwardjsentence command or function moves the cursor back by
a specified number of sentences.

S e c o n d E d i t i o n A - 2 8

EMACS FUNCTIONS AND COMMANDS

Command Format: [{ESC}n] {ESC} X backwardjsentence
or
[{ESC}n] {ESC} A

Function Format: (backwardjsentence [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, EMACS moves the cursor back to the
character preceding the rrth occurrence of a character that delimits
a sentence. (That is, EMACS moves the cursor back n sentences, and
leaves it at the character preceding the last sentence delimiter.)
Cursor movement stops if the beginning of the buffer is reached.

If the value of n is negative, EMACS moves the cursor forward to
the (-n)th occurrence of a character that delimits a sentence.
(That Is, EMACS moves the cursor ahead (-n) sentences, leaving the
cursor on the character immediately following the last sentence
delimiter.) Cursor movement stops if the end of the buffer is
reached.

The backward_sentence command returns the value NIL.

Note: The characters delimiting a sentence are in the global
string variable sentence_scan_table$.

backward_sentencef Function

The backward_sentencef function moves the cursor back by a
specified number of sentences, and returns a Boolean value
indicating whether the operation was successful.

Format: (backward_sentencef [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

The backward_sentencef function returns a Boolean value.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no cursor movement takes place, and
backward_sentencef returns the value true.

If the value of n is positive, EMACS moves the cursor back to the
character preceding the (-n)th occurrence of a character that
delimits a sentence. (That Is, EMACS moves the cursor back (-n)
sentences, and leaves it at the character preceding the last

A - 2 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

sentence delimited.) Cursor movement stops if the beginning of the
buffer is reached. If the beginning of the buffer is reached, then
b a c k w a r d _ s e n t e n c e f r e t u r n s t h e v a l u e f a l s e ; o t h e r w i s e ,
backwardjsentencef returns the value true.

Note: The characters delimiting a sentence are in the global
string variable sentencef_scan_table$.

balbak Command and Function

The balbak coinmand or function moves the cursor to the opening
parenthesis of the current level.

Command Format: [{ESC}n] {ESC} X balbak
or
[{ESC}n] {ESC} {CTRL-B} (LISP mode only)

Function Format: (balbak [n])

Argument: The argument n, if specified, must be an integer value.

Action: If the argument n is not specified, let n equal 1.

If n is greater than or equal to 0, EMACS proceeds as follows:

• If point is at a closing parenthesis, EMACS moves point to
the corresponding opening parenthesis.

• If point is on text, EMACS moves point back to the last
c los ing paren thes is , and then back aga in to the
corresponding opening parenthesis. This means that if point
is between statements or forms, EMACS skips back over the
last form or statements.

If the value of n is negative, EMACS executes:

(ba l fo r)

balfor Command and Function

The balfor command or function moves the cursor to the closing
parenthesis of the current level.
Command Format: [{ESC}n] {ESC} X balfor

or
[{ESC}n] {ESC} {CTRL-F} (LISP mode only)

Function Format: (balfor arg)

Argument: The argument n, if specified, must be an integer value.

S e c o n d E d i t i o n A - 3 0

EMACS FUNCTIONS AND COMMANDS

Action: If n is not specified, let n equal 1.

If the value of n is greater than or equal to 0, EMACS proceeds as
fo l lows:

• If point is at an opening parenthesis, EMACS moves point to
the corresponding closing parenthesis.

• If point is on text, EMACS moves point forward to the next
opening parenthesis, and then forward again to the
corresponding closing parenthesis. This means that if point
is between statements or forms, EMACS skips point forward
over the next form or statement.

If the value of n is negative, EMACS executes:

(balbak)

begin_line Command and Function

The begin_line command or function moves the cursor back to the
start of the line.

Command Format: {ESC} X begin_line
or
{CTRL-A}

Function Format: (begin_line [arg])

Argument: The optional argument, if specified, is ignored.

Action: EMACS moves the cursor to the beginning of the line.

The begin_line function returns the value NIL.

beginning_of_buffer jp Function

The beginning_of_bufferjp function tests whether the current cursor
is at the beginning of the buffer.

Format: (beginning_pf_bufferjp)

Argument: None.

Action: The beginning_of_bufferjp function returns a Boolean
value. The value is true if and only if the current cursor is at
the beginning of the buffer.

A - 3 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

beginning_of_linejp Function

The beginning_of_linejp function tests whether the current cursor
is at the beginning of the line.

Format: (beginning_of_linej?)

Argument: None.

Action: The beginning_of_linejp function returns a Boolean value.
The value is true if and only if the current cursor is at the
beginning of the line.

bolp Function

The bolp function is an abbreviation of beginning_of_linejp.

Boolean Data Type

A variable with the Boolean data type can have only the values true
and false.

buffer_info Function

The buffer_info function either gets or sets information about the
current buffer.

Format: (buffer_info p [v])

Arguments: The argument £ must have as a value the atom or symbol
representing the property to be accessed or changed. A complete
list of the valid property names is given below, under action.

The argument y, if specified, must have a data type that is
compatible with the property £.

Action: EMACS sets or accesses a specified buffer value. When a
value is changed, the function returns the previous value. The
argument r_ is the name of the value to be accessed or changed. The
second argument, if specified, is the value to be assigned to the
property £.

The legal values for the property r_ are as follows:

P r o p e r t y D a t a T y p e M e a n i n g

n a m e s t r i n g N a m e o f b u f f e r . T h i s p r o p e r t y m a y
not be modified.

S e c o n d E d i t i o n A - 3 2

defau l t_fi le

modified

modes

readjonly

changedjok

st r ing

Boolean

l i s t

Boolean

Boolean

EMACS FUNCTIONS AND COMMANDS

The pathname of the default file
associated with the buffer.

True if the buffer has been
modified. This is indicated by a *
on the status line.

The list of the modes associated
with this buffer.

True if the
modified.

buffer cannot be

If true, the user is allowed to
quit the editor with {CTRL-X}
{CTRL-C} even if this buffer has
been changed.

If true, the buffer name is
suppressed in the {CTRL-X} {CTRL-B}
l i s t i n g .

If true, specifies 2don mode is on.

Fill column for word wrapping.

The current marked position in the
buffer.

Pointer to the beginning of the
buffer.

Pointer to the end of the buffer.

(See below.)

The "user" option is used for extended values as in:

(buffer_info (user frob) 17)

This indicates a user variable. It is actually the car of a cons
whose cdr is a user-defined per buffer value. The cdr may be the
same as the name of a request value, in which case it is identical
to using the name directly without "user".

The following example returns or sets the list of modes associated
with the current buffer. Note that in the example, mode is an
unquoted atom as in:

(buffer_info modes (list (findjnode "quux")))

dont_show Boolean

twojdimensional Boolean

filljcolumn integer
mark cursor

top_cursor cursor

bottomjcursor cursor

user

A-33 Second Edition

EMACS EXTENSION WRITING GUIDE

So to add a new mode:

(buffer_info modes (append (buffer_info modes)
(findjnode newmode)))

or to remove a mode:

(buffer_info modes (remove (findjnode newmode)
(buffer_info modes)))

Note that the order of the modes in the list is significant!

bufferjiame Function

The buf fer jiame function returns the name of the associated buffer.

Format: (buffer_name c)

Argument: The argument c must have the data type of cursor.

Action: The bufferjiame function returns a string value. The
string contains the name of the buffer in which the cursor c lies.

capinitial Command and Function

The capinitial command or function changes the first character of a
word, if it is a letter, to uppercase.

Command Format: [{ESC}n] capinitial
o r
[{ESC}n] {ESC} C

Function Format: (capinitial [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is negative, EMACS sets n=-n, moves the cursor
back n words, and proceeds as in the following paragraph.

If the value of n is positive, EMACS starts with the current word
(or the next word, if the cursor is on whitespace) and converts the
first character of that word to uppercase, if it is a lowercase
l e t t e r .

The capinitial function returns the value NIL.

S e c o n d E d i t i o n A - 3 4

EMACS FUNCTIONS AND COMMANDS

car Function

The car LISP function returns the first item in a list.

Format: (car 1st)

Argument: The argument 1st must be a list.

Action: If 1st is a null list, car returns a null list.

If 1st is not a null list, car returns the first item of the list.
The data type of the value returned by car equals the data type of
the first item in the list.

case? Command and Function

The case? command and function displays a message telling whether
uppercase and lowercase letters are distinguished in searching.

Command Format: {ESC} X case?

Function Format: (case?)

Argument: A numeric argument, if specified, is ignored.

Action: If cases are being distinguished, the message "Cases are
looked at when searching" is displayed. Otherwise, the message
"Cases are ignored when searching" is displayed.

The case? function returns the value NIL.

case_off Command and Function

The casejoff command causes uppercase and lowercase letters to be
treated identically during searches.

Command Format: {ESC} X case_off

Function Format: (casejoff)

Argument: A numeric argument, if specified, is ignored.

Action: In subsequent search operations, EMACS ignores the
distinction between corresponding uppercase and lowercase letters.

The casejoff function returns the value NIL.

casejon Command and Function

The casejon command causes uppercase and lowercase letters to be
distinguished during searches.

A - 3 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Command Format: {ESC} X casejon

Function Format: (casejon)

Argument: A numeric argument, if specified, is ignored.

Action: In subsequent search operations, EMACS observes the
distinction between uppercase and lowercase letters.

The casejon function returns the value NIL.

case_replace? Command and Function

The case_replace? command and function displays a message telling
whether uppercase and lowercase letters are distinguished in
replacing.

Command Format: {ESC} X case_replace?

Function Format: (case_replace?)

Argument: A numeric argument, if specified, is ignored.

Action: If cases are being distinguished, the message "Cases are
looked at in replace" is displayed. Otherwise, the message "Cases
are ignored in replace" is displayed.

The case_replace? function returns the value NIL.

case_replace_off Command and Function

The case_replace_of f command causes uppercase and lowercase letters
to be treated identically during replace operations.

Command Format: {ESC} X case_replace_off

Function Format: (case_replace_off)

Argument: A numeric argument, if specified, is ignored.

Action: In subsequent replace operations, EMACS ignores the
distinction between corresponding uppercase and lowercase letters.

The case_replace_off function returns the value NIL.

case_replacejon Command and Function

The case_replace_on command causes uppercase and lowercase letters
to be distinguished during replace operations.

Command Format: {ESC} X case_replace_on

S e c o n d E d i t i o n A - 3 6

EMACS FUNCTIONS AND COMMANDS

Function Format: (case_replace_on)

Argument: A numeric argument, if specified, is ignored.

Action: In subsequent replace operations, EMACS observes the
distinction between uppercase and lowercase letters.

The case_replace_on function returns the value NIL.

catch Function

The catch function is the same as the *catch function, except that
the argument order is different.

Format: (catch body tag)

This is like *catch, except that the body and tag arguments are
evaluated. Because catch's argument order makes programming quite
difficult, the use of *catch is recommended instead. (See *catch
for further information.)

catenate Special Form

The catenate special form concatenates its string arguments.

Format: (catenate sl [s2 ... s8])

Arguments: The catenate special form takes at least one argument
and no more than eight arguments. All arguments must have the
string or character data type.

Action: The catenate function returns a string value.

If there is only one argument, sl, the value of sl is returned.

If there is more than one argument, catenate concatenates together
all the argument string values and returns the combined string.

Example: The function

(catenate "hi" "there")

returns the string value "hithere".

cdr Function

The cdr LISP function returns the value of the list argument with
the first item removed.

Format: (cdr 1st)

A - 3 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Argument: The argument 1st must be a list.

Action: The cdr function returns a list value.

If 1st is a null list or a list containing only one value, cdr
returns a null list.

If 1st is a list containing more than one item, cdr returns a list
containing all items in 1st except the first.

center_line Ganmand and Function

The center_line command or function centers one or more lines of
t e x t .

Command Format: [{ESC}n] {ESC} X center_line
or
[{ESC}n] {CTRL-X} {CTRL-Z} S

Function Format: (center_line [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, then n lines of text, beginning with
the current one and continuing forward, are centered.

If the value of n is negative, then -n lines of text, beginning
with the current one and proceeding backward, are centered.

To center a line of text, EMACS proceeds as follows:

• If the line is null (contains no characters), no action
takes place. Otherwise:

• EMACS removes all leading whitespace from the beginning of
the line. Then, let k equal the number of characters of
text remaining on the line.

• Let f equal the value returned by

(buffer_info fil l jcolumn)

If that value is 0 or undefined, let f equal 70.

• EMACS inserts (f-k)/2 spaces at the beginning of the line.

The center_line function returns the value NIL.

S e c o n d E d i t i o n A - 3 8

EMACS FUNCTIONS AND COMMANDS

char_to_string Function
The char_to_string conversion function converts a character
argument into a string of length one.
Format: (char_to_string c)

Argument: The argument c must have the character data type.
Action: The char_to_string function returns a string value of
length one. The string is computed by converting the character c
to a string.

character Data Type

A variable with the character data type can have as a value any
character.

character_argument Function

The character_argument function returns the character argument to
the current command.

Format: (character_argument)

Argument: None.

Action: The character_argument function returns a value with a
character data type. The value is the character argument to the
current coinmand; that is, the last character of the keypath used
to invoke the command.

charp Function

The charp function tests its argument to determine whether it has
the character data type.

Format: (charp arg)

Argument: The argument arg may be any data type.

Action: The charp function returns a Boolean value. The value is
true if the argument arg has the character data type; it is false
if the argument has a different data type.

clear_and_say Function

The clear_and_say function is the same as the init_localjdisplays
function.

A - 3 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

close_paren Command and Function

The close_paren command or function moves the cursor briefly to the
opening parenthesis that corresponds to the closing parenthesis
just typed.

Command Format: {ESC} X close_paren
or
) (LISP mode only)

Function Format: (close__paren)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS takes the following action:

• Inserts a closing parenthesis at the current point.

• Moves the cursor to the opening parenthesis that corresponds
to the closing parenthesis just typed.

• After a pause, returns the cursor to the posi t ion
immediately following the closing parenthesis just typed.

This command aids you in typing LISP or PEEL programs by helping
you match parentheses in LISP mode.

Note: The variable lisp.paren_time controls the duration of the
pause at the opening parenthesis. It is normally 750 milliseconds,
but can be changed to another value if desired. A value of 0 turns
off close_paren.

collect_jnacro Command

The collectjmacro command starts collecting keystrokes typed at the
terminal, in order to define a macro.

Command Format: {ESC} X cx>llect__macro
or
{CTRL-X} (

Argument: A numeric argument, if specified, is ignored.

Action: EMACS begins to collect keystrokes typed at the terminal.

Note: Collection of keystrokes is terminated by the finish_jnacro
conmand, which is bound as {CTKL-X}). The resulting macro may be
executed by the execute__macro comnand, which is bound as
{CTRL-X} E.

Be aware that you should not expect this command to work too well
when imbedded in a function!

S e c o n d E d i t i o n A - 4 0

EMACS FUNCTIONS AND COMMANDS

comraand_abort_handler Atom

The comniandjabortjiandler atom is used in conjunction with the
withjcommand_abort_handler function, which executes its arguments
up to the cominand_abort_handler atom. If an error is encountered,
the error flags (and throws) are reset, and execution continues
after the command_abort_handler token.

(See the description of withjCQmmand_abort_handler for further
information.)

cons Function

The cons function is a LISP function that adds a new item to the
front of a list.

Format: (cons i 1st)

Argument: The argument i is an item with any data type. The
argument 1st is almost always a list, but may have any data type if
you wish to produce a "dotted list".

Action: The data type of the value returned by cons is a list.

If the argument 1st is a list, cons returns the list formed by
adding the item i to the front of the list 1st.

If the argument 1st is not a list, cons returns a dotted list (or
cons) whose car is the item i and whose cdr is the item 1st.

convert_tabs Function

The convert_tabs function takes a list of numbers and converts them
to tab stops.

Format: (convert_tabs s)

Argument: The argument s must be a string.

Action: The string s must contain a series of numbers separated by
spaces, and the last number must end in a space. The numbers must
be positive and in increasing order.

EMACS sets the tab stops at positions specified by numbers in the
s t r i n g .

The convert_tabs function returns the value NIL.

A - 4 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

convert_to_base Function
The convert_to_base function converts an integer to a specified
numeric base and returns the result as a string.

Format: (convert_to_base n bv [In])

Argument: The argument n must be an integer. The argument by must
be either a string or a positive integer. The argument In, if
specified, must be an integer.
Action: The convert_to_base function returns a string value.

EMACS proceeds as follows:
• If bv is an integer value, let b equal by; otherwise, let b

equal the length of string by.
• If by is a string value, let s equal by; otherwise, let s

equal the first b characters of the st r ing
"0123456789abcdefghijklmnopqrstuvwxyz"

• EMACS converts the integer n to a string of base b, using as
digits the characters of the string s. Let t be the
resulting string of digits.

• Let czero equal the first character of the string s. (This
is usually the character "0".)

• If the argument In is specified, and if the value of In is
longer than the string t, EMACS inserts additional czerocharacters to the front of the string t, but after a -~, IF
any, so that the length of the string t equals the value of
In.

• If the argument In is specified and is smaller than the
length of the string t, EMACS sets t equal to a string of
length In containing only *'s.

EMACS returns the string t.

Examples:
(convert_to_base 255 16)

(convert_to_base 32 8 3)

These return the string values "ff" and "040", respectively.

S e c o n d E d i t i o n A - 4 2

EMACS FUNCTIONS AND COMMANDS

copy_array Function

The copy_array function copies one array to another.

Format: (copy_array al a2 [idxl [n [idx2]]])

Arguments: The arguments al and a2 must be array values. Usually,
al and a2 are assigned array values by setq in conjunction with the
make_array function.

The arguments idxl, n, and idx2, if specified, must all be integer
values.

Action: The copy_array function returns an array value. This
array value is computed as follows:

• Let ml and m2 equal the number of elements in the arrays al
and a2, respectively, ml and m2 are the values specified as
the last argument to the make_array function calls that
created the arrays al and a2.

• If the argument idxl is not specified, let idxl equal 0.

• It is an error if idxl is <0 or >=ml.

• If the argument n is not specified, let n = ml.

• It is an error if either n<0 or idxl + n >= ml.

• If the argument idx2 is not specified, let idx2 = 0.

• It is an error if idx2 + n >= m2.

• EMACS copies n consecutive elements from the array a2 to the
array al. The n consecutive elements are taken From the
array a2, starting at index position idx2, and are copied to
the array al, starting at index position idxl.

The copy_array function returns the array al.

copy_cursor Function

The copyjcursor function returns a copy of the specified cursor.

Format: (copy_cursor cur)

Argument: The argument cur must be a cursor value.

Action: The copy_cursor function returns a cursor value.

EMACS makes a copy of the cursor value specified by the argument
cur, and returns that copy.

A - 4 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Example:

(setq old (copyjcursor currentjcursor)
(forwardjword) ...
(go_to_cursor old)

The first line makes a copy of the current cursor position, and
assigns that to the variable old. The last line returns the cursor
to the original cursor position.

Note: Replacing the first line in the preceding example with

(setq old current_cursor)

would not have worked, because any cursor movement would have
changed the values of both currentjcursor and old.

copy_region Command and Function

The copy_region command or function copies the current region into
the kill ring.

Qanmand Format: {ESC} X copy_region
or
{ESC} W

Function Format: (copy_region)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS copies the characters between the current cursor and
the last marked position in the current buffer into the kill ring
without deleting them from the buffer.

The copy_region function returns the value NIL.

cpujtime Function

The cpu_time function returns the current cpu time in milliseconds.

Format: (cpu_time)

Argument: None.

Action: The cpu_time function returns an integer value. The
integer value is the cpu time used since login.

S e c o n d E d i t i o n A - 4 4

EMACS FUNCTIONS AND COMMANDS

cr Command and Function

The cr command or function inserts a newline into the text buffer.

Command Format: [{ESC}n] cr
or
[{ESC}n] {CTRL-M} (carriage return key)

Function Format: (cr [n])

Argument: If the argument n is specified, it must be an integer.

Action: If the argument n is not specified, let n equal 1.

If n is less than or equal to 0, no action takes place.

If n is greater than 0, EMACS inserts n newline characters into the
text buffer at the current cursor position. The cr function
returns the value NIL.

create_text_save_buffer$ Function L7k,s. H fitth* i^rsi, «=*■* ^^ Com^t cWferm\(*-e *__i_> ***$*-Ii

The create_text_save_buffer$ function goes to or creates the next
buffer in a circular list of ten buffers.

{Format: (create_text_save_buffer$ s)

Argument: The argument s must be a string value. *~
Action: EMACS goes to or creates the next buffer in a circular
list of ten buffers. EMACS deletes the contents of that buffer,
and inserts the string s into that buffer.

The create_text_save_buffer$ function returns the value NIL.

cret_indent_relative Command and Function
The cret_indent_relative command or function inserts a new-line
character into the text buffer at the current cursor position, and
then indents the next line to the first nonwhitespace character of
the previous line.

Command Format: [{ESC}n] {ESC} X cret_indent_relative
or
[{ESC}n] {CTRL-X} {RETURN}

Function Format: (cret_indent_relative [n])

Argument: The argument n, if specified, must be an integer value.

Action: If n is not specified, let n=0.

A - 4 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Let k equal the number of whitespace characters at the beginning of
the current line. If the line is blank, k=0.

EMACS inserts a newline and k spaces into the text buffer at the
current cursor position

The cret_indent_relative function returns the value NIL.

cur_hpos Function

The cur_hpos function returns an integer value indicating the
current horizontal position of the cursor.

Format: (cur_hpos)

Arguments: None.

Action: The cur_hpos function returns an integer value. The value
returned equals one plus the number of characters on the current
line to the left of the current cursor position.

current_character Function

The current_character function returns the character at the cursor.

Format: (current jcharacter [cur])

Argument: The argument cur, if specified, must be a cursor value.

Action: The current_character function returns a character value.

If the argument cur is not specified, let cur equal the current
cursor.

The current_character function returns the character at the
specified cursor position.

currentjcursor Variable

The current_cursor variable has the data type cursor and equals the
value of the current cursor position.

Note: The current_cursor variable is not normally used with
parentheses, because it is not a function. If you bind a variable
to current_cursor, the new variable also changes value whenever the
current cursor changes. For example,

(setq cur current jcursor)

binds the variable cur to the current cursor, with the result that
any cursor movement command changes the value of cur and

S e c o n d E d i t i o n A - 4 6

EMACS FUNCTIONS AND COMMANDS

cur rent jcursor. To make a copy of a cursor that will not change in
this manner, use the copy_cursor function.

Caution

You should never set current_cursor. EMACS may become very
confused.

current_handler Function
The current_handler function returns a string value representing
the current handler.

Format: (current_handler [chase_atom])

Argument: If an argument is specified, it must be the atom
chase_atom.
Action: The currentjiandler function returns a string value.

This is the object for the current command handler and is used with
handler_info. If chase_atom is specified, the function cell of the
atom is returned if the object is an atom. This is normal usage.

(See handler_info for more information.)

current_line Function

The current_line function returns a string value containing the
current line without the line-ending newline.

Format: (current_line [cur])

Argument: The argument cur, if specified, must have a cursor
value.

Action: The current_line function returns a string value.

If the argument cur is not specified, let the value of cur be the
current cursor.

EMACS forms a string containing all the characters on the line
pointed to by the cursor cur, except the line-ending newline, andreturns that string value.

currentjnajorjwindow Function
The currentjnajorjwindow function returns the current major window.

Format: (currentjnajorjwindow)

A - 4 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Arguments: None.

Action: The currentjnajorjwindow returns a value with the window
data type. The value returned is the current major window.

Note: This is the window in which the current_cursor will be
r e d i s p l a y e d . Yo u c a n u s e t h e v a l u e r e t u r n e d b y
currentjnajorjwindow in the go_to_window function. Incidentally,
the minibuffer is not a major window.

cursor Data Type

Cursor is a data type. Cursors are pointers to text in buffers.
When you assign a cursor value to a variable, such as by using setq
with the copy_cursor function, EMACS attempts to make that cursor
continue to point to the same text in the buffer, no matter what
other changes in text are made to the buffer. A number of
operations may be performed on cursors, but most operations operate
on the current cursor, which is also the user's cursor. For
example, forwardjchar advances the current cursor forward by one
character. It is rather easy to save the current cursor position
(using copy jcursor and setq), execute a series of commands that may
alter it, and then use go_to_cursor to return the cursor to its old
value.

cursor_info Function

The cursorjnfo function returns information about the current
cursor position.

Format: (cu__J6^ijifcrp) (cursor- r^-fo Cu-rsoc p La^A*])

Arguments: The argument r> must be an atom, as described below.

Action: EMACS returns a value whose data type depends upon the
atom p_.

EMACS returns information about the current cursor position that
depends upon the property specified by the atom _>. The atom p may
have any of the following values:

E D a t a T y p e P r o p e r t y

b u f f e r _ n a m e s t r i n g N a m e o f t h e b u f f e r
l i n e _ n u m i n t e g e r L i n e n u m b e r
c h a r j p o s i n t e g e r C h a r a c t e r p o s i t i o n o n l i n e
s t i c k y B o o l e a n C u r s o r m o v e s w i t h t e x t

« * * *
Note: You cannot set any of these properties using cursor_info. /
Use~the make cursor function to create a new cursor value. —i

S e c o n d E d i t i o n A - 4 8

EMACS FUNCTIONS AND COMMANDS

cursor_on_current_linejp Function
The cursor_on_current_linejp function returns a Boolean value
indicating whether the current cursor is on the same line as the
argument cursor.
Format: (cursorjon_current_linejp cur)

Argument: The argument cur must be a cursor value.
Action: The cursor_on_current_linejp function returns a Boolean
value. The value is true if the current cursor is on the same line
as the argument cur, and is false if the current cursor is on a
different line.

cursor_same_jline_p Function
The cursor_same_linej? function returns a Boolean value indicating
whether two cursors point to the same line.

Format: (cursor_same_linej? curl cur2)

Arguments: The arguments curl and cur2 must be cursor values.

^_. Action: The cursor_same__linejp function returns Boolean values.■ The value is true if curl and cur2 refer to the same line, and
false if they refer to different lines.

Data Types

The PEEL data types are:
1 a n y 2 B o o l e a n 3 c h a r a c t e r

^ ^ 4 i n t e g e r 5 s t r i n g 6 a t o mr 7 f u n c t i o n 8 l i s t 9 c u r s o r
10 buffer 11 dispatch_table 12 handler
13 buffer structure 14 window 15 array
16 PL/I subroutine

date Command and Function

The date command or function inserts a date into your text buffer
at the current cursor position.

Command Format: {ESC} X date

Function Format: (date)

Argument: A numeric argument, if specified, is ignored.

A - 4 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Action: EMACS inserts the current date into your text buffer at
the current cursor position. The date format is illustrated by the
fo l low ing :

TUE, 19 MAY 1981

The date function returns the value NIL.

decimal_rep Function
The decimal_rep function is the same as the integer_to_string
function.

decompose Special Form
The decompose special form is a special LISP function for arranging
the contents of one list into a pattern specified by another list.

Format: (decompose v f sl else s2)

Arguments: The arguments y and f must be list values. The
arguments sl and s2 are any PEEL code strings.
Action: EMACS evaluates the argument y, but not the argument f.

EMACS then matches the elements of the list f with corresponding
elements in the list v, proceeding as follows:

• If the item in list f is NIL, the item in list y must also
be NIL.

• If the item in f is an atom, EMACS binds it locally to the
corresponding item in the list y.

• If the item is a list, EMACS binds the car of this item to
the car of the corresponding item in y, and the cdr of the
item to the cdr of the corresponding item in y.

If these local assignments are made without error, EMACS executes
the code sequence sl. If an error occurs during the matching,
EMACS executes the sequence s2.

(decompose '(abe) (x . y)
(print x)
(print y)

else
(print "DECOMPOSITION ERROR"))

S e c o n d E d i t i o n A - 5 0

EMACS FUNCTIONS AND COMMANDS

This prints: a
(b c)

(decompose '((a b) (c d)) (x (y z))
(print (list x y z))

else
(print "DECOMPOSITION ERROR"))

This prints: ((a b) c d)

Note: This function is particularly useful for writing macros.
(See the Sanacro option of defun.)

def_auto Function

The def_auto function makes another function (defined in a separate
file) available for automatic loading when it is invoked.
Format: (def_auto f h s)

Arguments: The argument f must be an atom. The arguments h and s
must be string values.

Action: EMACS defines the function f without actually loading the
function. The function is thus available for use, but the time
required to load the function is not spent until it is invoked.

The string h is saved as a help string for the function.

The string s is the pathname of the .EFASL file containing the
actua l funct ion defin i t ion. The firs t t ime the funct ion is
invoked, EMACS goes to the file specified by the pathname s and
fasloads that file, replacing the definition of the function and
then executing it. Subsequent invocations of the function use the
fasloaded definition directly.

The def_auto function returns the value NIL.

Example:

(def_auto poem
"Anthony's program to write poetry"
"ANTHONY>EMACS>POEM")

This statement defines poem as an EMACS command to load and then
execute the file ANTHONY>EMACS>POEM.EFASL. Presumably a file named
POEM.EM, containing the actual defcom for the "poem" command, had
previously been compiled, by using the dump_file command.

A - 5 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

default tabs Command and Function

The default_tabs command or function restores tab positions to
every five spaces.

Command Format: {ESC} X default_tabs

Function Format: (default_tabs)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS restores the default tab positions, set at every
five spaces.

The default tabs function returns the value NIL.

defcom Special Form

The defcom special form defines a new command.

Format:

(defcom command jiame
Sdoc | sdocumentation <documentation_string>
Stna I Stnumeric__arg

Strepeat | Stpass <variable> [sdefault <value>]
Stargs | Starguments ((<name> Stprompt <string>Sdefault <value>

Ststring I Stsymbol | sdnteger)
...)

Stprefix
Stchararg 1 &character_argument
<body>

)

Arguments: (See Chapter 5.)

Action: EMACS defines a new command, as described in Chapter 5.

The defcom function returns the value NIL.

defun Special Form

The defun special form defines a new function.

Format: (defun name ((<argumentl><typel>) ...
. Stoptional ... Strest ... Stquote ...

Streturns <type>
Stlocal (<variablel><type2>) ...)

<body>
)

S e c o n d E d i t i o n A - 5 2

EMACS FUNCTIONS AND COMMANDS

Arguments: (See Chapter 5.)

Action: The defun function defines a new function, as described in
Chapter 5.
The defun function returns the value NIL.

You may also specify defun with the argument Stmacro. In this case,
the function returns a list that should be evaluated in the calling
context. (See page 127 of the second edition of Winston and Horn's
LISP for an explanation of the LISP backcjuote-and-comma syntax used
for Stmacro.)

Example: Consider the following definition:

(defun foo (x Stmacro)
(rx ,x))

In this case, reference to (foo bar) returns (* bar bar).

delete_blank_JLines Command and Function
The delete_blank_lines command or function deletes all blank lines
around the current cursor.

Command Format: {ESC} X delete_blank_lines
or
{CTRL-X} {CTRL-O}

Function Format: (delete_blank_lines)

Argument: A numeric argument, if specified, is ignored.
Action: If the current cursor is on a nonblank line, EMACS moves
the cursor down to the first blank line, stopping if the end of the
buffer is reached. EMACS then deletes blank lines until the cursor
is again on a nonblank line or at the end of the buffer.

The d_lete_blank_J.ines function returns the value NIL.

delete_buffer Function
The deletejxiffer function deletes the contents of a buffer without
saving it on the kill ring.
Format: (delete_buffer)

Arguments: None.

A - 5 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Action: EMACS deletes the contents of the current buffer, without
saving it on the kill ring.

The delete buffer function returns the value NIL.

delete_char Command and Function

The deletejchar coinmand or function deletes one or more characters
forward.

Command Format: [{ESC}n] {ESC} X delete_char
or
[{ESC}n] {CTRL-D}

Function Format: (deletejchar [n])

Argument: The argument n, if specified, must be an integer value.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If n is positive, EMACS deletes n characters beginning with the
character at the current cursor position and continuing forward,
stopping if the end of the buffer is reached.

If the value of n is negative, EMACS deletes -n characters,
beginning with the character preceding the current cursor position,
and continuing backward, stopping if the beginning of the buffer is
reached.

If the absolute value of n is greater than 64, a prompt "Count is
<n>. Are you sure?" is displayed.

The delete char function returns the value NIL.

deletejpoint_cursor Function

The delete__point_cursor function deletes all the text between the
current cursor position and the argument cursor position.

Format: (delete_jpoint_cursor cur)

Argument: The argument cur must be a cursor value.

Action: EMACS deletes all text between the current cursor position
and the cursor position specified by the argument cur.

The delete_point_cursor function returns the value NIL.

S e c o n d E d i t i o n A - 5 4

EMACS FUNCTIONS AND COMMANDS

delete_region Command and Function

The delete_region command and function deletes the current marked
region without putting it onto the kill ring.
Command Format: {ESC} X delete_region

Function Format: (delete_region)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS deletes all the text in the region between the
current cursor position and the marked position. The text is not
saved on the kill ring.

The delete_region function returns the value NIL.

delete_white_left Function
The delete_white_left function deletes all consecutive whitespace
to the left of the current cursor position.

Format: (delete_white_left)

Arguments: None.
Action: The delete_white_left function returns a Boolean value.

If there is a whitespace character at the current cursor position
and a whitespace character to the left of the current cursor
position, EMACS deletes all consecutive whitespace characters to
the left of the current cursor position, and returns the value
true.
If those conditions are not met, EMACS takes no action and returns
the value false.

delete_white_right Function
The delete_white_right function deletes all contiguous whitespace
to the right of the current cursor position.

Format: (delete_white_right)

Arguments: None.

Action: The delete_white_right function returns a Boolean value.

A - 5 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

If there is a whitespace character at the current cursor position
and a whitespace character to the right of the current cursor
position, EMACS deletes all consecutive whitespace characters to
the right of the current cursor position, and returns the value
t rue .

If those conditions are not met, EMACS takes no action and returns
the value false.

deletejwhitejsides Function

The deletejwhitejsides function deletes all whitespace characters
surrounding the current position.

Format: (delete_white_sides)

Arguments: None.

Action: The deletejwhitejsides function returns a Boolean value.

If there is a whitespace character at the current cursor position,
EMACS deletes it and all consecutive whitespace characters to the
right and to the left of the current cursor position, and returns
the value true.

If the character at the current cursor position is not a whitespace
character, EMACS returns the value false.

Note: The deletejwhitejsides function has the same effect as the
white delete function.

deletejword Command and Function

The deletejword command or function deletes one or more words.

Command Format: [{ESC}n] {ESC}X deletejword
or
[ESC}n] {ESC} D

Function Format: (delete_word [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes places.

If the value of n is positive, EMACS deletes n words in the text,
beginning with the word at the current cursor position and
continuing forward. Deletion stops if the end of the buffer is
reached.

S e c o n d E d i t i o n A - 5 6

EMACS FUNCTIONS AND COMMANDS

If the value of n is negative, EMACS deletes -n words beginning
with the word preceding the current cursor position, and moving
backward. Deletion stops if the beginning of the buffer is
reached.

The deletejword function returns the value NIL.

Note: The tokenjchars atom contains a list of the characters that
define a word or token.

describe Command and Function

The describe command or function gives you information about an
EMACS command.

Command Format: {ESC} X describe
o r
{CTRL-J D

Function Format: (describe [s])

Argument: A numeric argument, if specified, is ignored.

The argument s, if specified, must be a string value.

Action: If the argument s is not specified, EMACS prompts you for
a string s.

If the string s does not begin with the character @, EMACS displays
a list of all Function names that begin with the string s.

If the string s begins with a single @ character, EMACS prints a
list of all function names that contain the remaining characters in
the string s anywhere in their name.

If the string s begins with two @ characters, EMACS prints a list
of all function names for functions that reference any other
function beginning with the remainder of the string s.

dispatch Special Form

The dispatch special form compares the text following the current
cursor against a set of strings to determine what action to take.

Format: (dispatch
xl sl
x2 s2
• • •
otherwise sx)

Arguments: Each argument, xl, x2, and ... may consist of one or
more string or character values.

A - 5 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Each argument
statements.

s l , s2 , and sx may consist of one or more PEEL

Action: EMACS compares the text following point to xl, x2, and ...
until a match is found. If a match is found, "then the
corresponding PEEL statement sl, or s2, or ... is executed, and
the value of that statement is returned as the value of dispatch.
Otherwise, the statement sx is executed, and the value of that
statement is returned as the value of dispatch.

If no match is found and no "otherwise"
dispatch returns the value NIL.

(See Chapter 4 for more information.)

statement is specified,

dispatch_info Function

The dispatch_info function gets or sets information on a mode or
dispatch table. It returns the old value of the property.

Format: (dispatch_info dt p [v])

Arguments: The argument dt must be a dispatch table. The argument
£ must be an atom, as described below under action. The argument
y, if specified, must have a data type compatible with the argument
E-
Action: The dispatch_info function can be used to set the handler
associated with keys. A mode value is a dispatch table that is
found using the findjnode function. The argument to findjnode is
either an atom or a string (that is returned by the function). The
returned value is the mode value. The following modes are
predefined:

mam

x

esc

This is the main character dispatch mode.

This is the dispatch table for the {CTRL-X} prefix
in the main dispatch table.

This is the dispatch table for ESCAPE
dispatch table.

in the main

mbjncde This is the dispatch table for minibuffers.

reader This is the dispatch table used by the keyboard
reader. It is used, for example, to define {CTRL-_}
to be help_on_tap. If the function returns a string
or character value, the result is returned in place
of the character actually read. Otherwise, the
reader wi l l read another character f rom the
keyboard. Note that the "raw" reader does not
invoke reader functions.

Second Edition A-58

EMACS FUNCTIONS AND COMMANDS

The dispatch_info function can be used to interrogate and modify
dispatch tables. The argument dt is a dispatch table (that is, a
mode). The argument _) is either the quoted atom 'name, in which
case the name of the mode is returned as a string, or it is a
character, string, or integer value identifying the entry to be
interrogated and/or modified.

The argument y, if specified, is the new object to be placed into
the dispatch table.

The value returned by dispatch_info is determined by the following
ru les :

• The function returns an atom if the dispatch table is bound
to a command or function. The atom is the (command or
func t i on .

• The function returns NIL if nothing is bound to the entry.

• The function returns a dispatch table (mode) if the entry is
a prefix key, that is, an intermediate part of a key path.
(For example, the {ESC} entry in main is bound to escape
mode.)

Note: To determine whether a command (handler) or function is
bound, use fsymeval on the returned atom. If it is a handler, then
handler_info may also be useful.

displayjerrorjnoabort Special Form

The displayjerrorjnoabort special form is the same as the
errorjnessage function.

do_forever Special Form

The do_forever function performs an infinite loop.

Format: (do_forever sl [s2 ...])

Arguments: The arguments sl, s2, and ..., if specified, are any
PEEL statements to be executed in the loop.

Action: PEEL executes all the arguments, sl, s2, and ..., and
repeats execution of them in an infinite loop until stop_doing is
executed.

The do_forever function returns the value NIL.

A - 5 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

dojijtimes Special Form

The dojijtimes special form executes a loop for a specified number
of i terations.

Format: (do_n_times n sl [s2 ...])

Arguments: The argument n must be an integer value.

The arguments sl, s2, and ..., if specified, may be any PEEL
statements.

Action: If the value of n is 0, or negative, no action is taken.

If the value of n is positive, PEEL executes the statements sl, s2,
and ... in a loop for n iterations, or until stopj3oIng is
executed.

The dojijtimes function returns the value NIL.

downcase Function

The downcase function converts uppercase letters in its string
argument to lowercase.

Format: (downcase s)

Argument: The argument s must be a string or character value.

Action: The downcase function returns a string value. The string
is computed by returning a copy of the string s after converting
all uppercase letters to their corresponding lowercase letters.

dt 0>mmand and Function

The dt command or function inserts the current date and time into
your text buffer at the current cursor position.

Command Format: {ESC} X dt

Function Format: (dt)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS inserts the current date and time into your text
buffer at the current cursor position. An example of the format
used is as follows:

05/19/81 11:06:57

S e c o n d E d i t i o n A - 6 0

EMACS FUNCTIONS AND COMMANDS

dump_file Command

The dump_file command "compiles" PEEL source to a fasdump format
fi l e .

Format: {ESC} X dump_file

Argument: A numeric argument, if specified, is ignored.
Action: EMACS partially compiles the PEEL program in the current
text buffer and dumps it to a file. If the buffer name is of the
form x.EM, EMACS creates the fasdump file x.EFASL. If the buffer
name cToes not have the suffix .EM, EMACS simply adds the suffix
.EFASL to the buffer name.

else Atom

The else atom is used in the if function. (See that function
description for further information.)

empty_buffer_p Function
The empty_buffer_p function tests if the current buffer is empty.

Format: (empty _buffer_p)

Arguments: None.
Action: The empty_bufferjp function returns a Boolean value. The
value returned is true if the current buffer is empty and false if
the current buffer contains text.

end_line Command and Function

The end_line command or function moves the cursor to the end of the
current line.

Command Format: {ESC} X endJLine
or
{CTRL-E}

Function Format: (end_line)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS moves the cursor to the end of the current line.

The end__line function returns the value NIL.

A - 6 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

endjof_buffer_p Function

The endjofjbufferj? function tests whether the current cursor is at
the end of the buffer.

Format: (endjof jbuffer j?)

Arguments: None.

Action: The endjofjbufferj? function returns a Boolean value. The
value returned is true if the current cursor is at the end of the
buffer; otherwise, it is false.

endjof _line_p Function

The endjof_line_p function tests whether the current cursor is at
the end of the line.

Format: (end_of_line_p)

Arguments: None.

Action: The end_pf_line_p function returns a Boolean value. The
value returned is true if the current cursor is at the end of the
line; otherwise, it is false.

eolp Function

The eolp function is an abbreviation of end_of_linejp.

eq Function

The eq function tests whether its arguments are the same object.

Format: (eq argl arg2)

Arguments: The arguments argl and arg2 may have any data type.

Action: The eq function returns a Boolean value. The returned
value is true if argl and arg2 are the same object, and false if
they are different objects.

Note: In almost all cases, you should use the = function in
preFerence to the eq function. To understand the difference,
consider the following two examples:

(eq 2 2)
(eq "a" "a")

S e c o n d E d i t i o n A - 6 2

EMACS FUNCTIONS AND COMMANDS

The first of these examples is always true because the integer 2
always becomes the same object. But the second example is never
true (if typed in the minibuffer), because a new copy of the string
"a" is allocated for each argument by the reader. However, if the
= function is used instead of eq in the above two examples, the
values of both would be true.

errorjnessage Special Form
The errorjnessage special form displays an error message in the
minibuffer. It does not abort the current command.

Format: (errorjnessage s)

Argument: The argument s must be a string.
Action: EMACS displays the string s in the minibuffer.

The errorjnessage function returns the value NIL.

Note: Unlike the infojnessage function, this function forces a
screen update even if redisplay has been suppressed, for example
with with_no_redisplay.

Escape Sequences

Escape sequences provide a method to enter control characters so
that they are printable. The following escape sequences are
ava i lab le :

~hnn The character with hexadecimal code of nn

~cC The cont ro l character cor responding to the
character C

~ n T h e n e w l i n e c h a r a c t e r

~" or ~q The string delimiter (double quotation mark)

The string escape character (tilde)

~<nl> Concealed newl ine, a l lowing str ings to be
continued on the next line without including
the newline character in the string

europejdt Command and Function

The europejdt command or function inserts the current date in
European format into your buffer.

Command Format: {ESC} X europe_dt

A - 6 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Function Format: (europejdt)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS inserts the current date in numerical European
format, dd/mm/yr, into your text at the current cursor position.
The format is similar to the following:

19/09/85

The europejdt function returns the value NIL.

eval Function

The eval function is a LISP function that evaluates its arguments
and returns the result.

Format: (eval f)

Argument: The argument f is a form or any executable PEEL program.
Action: PEEL executes the form f and returns the result.

Note: You can evaluate a form f simply by executing it as part of
your PEEL program. Therefore, if you are writing a simple PEEL
program and explicitly calling the eval function, you are probably
doing something wrong. The eval function is primarily useful in
programs that deal with LISP or PEEL itself, rather than programs
about string manipulation.

evaluate_af Function
The evaluate_af function evaluates an active function in PRIMOS.
It is similar to the af function, but returns a string value rather
than inserting it into the current buffer.

Format: (evaluate_af s)

Argument: The argument s must be a string value.
Action: EMACS evaluates the string s as an active function in
PRIMOS, and returns a string value.

Example: The function
(evaluate_af "[ATTRIB <0>CMDNC0 -TYPE]")

returns the string value "UFD".

S e c o n d E d i t i o n A - 6 4

EMACS FUNCTIONS AND COMMANDS

exchangejnark Command and Function

The exchangejnark command or function exchanges mark and point.

Command Format: {ESC} X exchangejnark
or
{CTRL-X} {CTRL-X}

Function Format: (exchangejnark)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS exchanges mark and point. That is, the current
cursor position is set equal to the last marked position, and the
mark is reset to the cursor position prior to the beginning of this
command.

The exchangejnark function returns the value NIL.

executejnacro Command and Function

The execute_macro command or function executes a stored sequence of
commands.

Command Format: [{ESC}n] {ESC} X executejnacro
or
[{ESC}n] {CTRL-X} E

Function Format: (executejnacro [n])

Argument: The argument n, if specified, must be an integer value.

Action: If n is not specified, let n equal 1.

EMACS repeats the following step n times: it executes the macro
consisting of the collection oF keystrokes collected by the last
collect jnacro and finish jnacro cc»mmands.

exitjninibuffer Command

The exitjninibuf fer command exits the minibuffer.

Format: {ESC} X exitjninibuffer
or
{RETURN} (only when in minibuffer)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS exits the minibuffer. You are returned to the
current cursor position in your major window or buffer.

A - 6 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

expand jnacro Gammand and Function

The expandjnacro command or function expands a stored keyboard
macro into equivalent PEEL code.

Command Format: {ESC} X expandjnacro

Function Format: (expandjnacro [s])

Argument: A numeric argument, if specified, is ignored.

The argument s, if specified, must be a string value.

Action: If the argument s is not specified, EMACS prompts you in
the minibuffer with "macro name:". The string that you type is
assigned to the variable s.

EMACS expands the keyboard macro keystrokes collected by the last
collect jnacro into PEEL code, as a defcom with a name specified by
the string s, and stores the resulting PEEL source code into the
text buffer at the current cursor position.

explain_key Command and Function

The explain_key command or function invokes the help facility that
explains a specified keypath.

Command Format: {ESC} X explain_key
or
{ESC}?

Function Format: (explain_key)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS invokes the help facility that explains a specified
keypath. EMACS does not prompt you. The next keypath that you
type is explained rather than performed.

The explain_key function returns the value NIL.

extendjooramand Command

The extend_command command is the EMACS facility that allows you to
execute any EMACS function by typing {ESC} X followed by the
function's name.

S e c o n d E d i t i o n A - 6 6

EMACS FUNCTIONS AND COMMANDS

fasdump Function

The fasdump function compiles and dumps the current buffer in
fasload format.

Format: (fasdump s [d])

Arguments: The argument s must be a string value. The argument d,
if specified, must be a Boolean value.

Action: The fasdump function compiles the current buffer
(containing PEEL code) and puts the result into a file. The name
of the file is the concatenation of the string s and the
string .EFASL.
The fasdump function returns the value false.

fasload Function

The fasload function loads a fasload format file.

Format: (fasload s [d])

Arguments: The argument s must be a string value. The argument d,if specified, must be a Boolean value.

Action: The fasload function loads and executes a fasload-format
file. The name of the file is the concatenation of the string s
and the string ".EFASL".

If the argument d is not specified, let d equal false. If the
value of d is true, then debugging information is printed;
otherwise, debugging information is not printed.
The fasload function returns the value false.

file_info Function
The file_info function queries or sets information about a file.

Format: (file_info s p [v])

Arguments: The argument s must be a string value.
The argument s is the pathname of the file.

The argument r_ (representing the desired property) must be one of
the atoms listed below under action.

The argument v, if specified, must have a data type that is
consistent with the argument p_.

A - 6 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Action: Each possible value of the argument p corresponds to a
file property. The different possible values for p and their
corresponding properties are as follows:

File Property

Absolute pathname of the file.

Entry name of the file.

The name of the directory that
conta ins the fi le . (read-only) .

T y p e o f fi l e : n o n e , fi l e ,
directory, segdir, or unknown,
(read-only)

True if and only if file exists.
(read-only)

True if and only if file has been
dumped, (read-only)

E Data Type

pathjiame str ing

entry jiame str ing

di rectory_name str ing

type

e x i s t s

dumped

s t r i n g

Boolean

Boolean

The argument y, if specified, must have the data type shown for the
argument £ in the preceding table.

The file information attribute being set or queried is specified by
the argument _>, as shown in the preceding table. If the argument y
is specified, it is ignored, because at the present time no file
attribute values may be changed.

The file_info function returns the value of the file attribute
specified by the argument _>, as shown in the preceding table.

filejiame Function

The filejiame function returns the default filename associated with
a buffer.

Format: (filejiame cur)

Argument: The argument cur must be a cursor value.

Action: The filejiame function returns a string value. The string
value returned is the file name associated with the buffer into
which the cursor cur points.

Second Edition A-68

EMACS FUNCTIONS AND COMMANDS

file_operation Function
The filejoperation function deletes a file.

Format: (filejoperation s delete)

Argument: The argument s must be a string value.
Action: EMACS deletes the file with the pathname specified by the
string s, and returns the PRIMOS error code. The error code equalszero if the delete was successful. The error code equals nonzero
if the delete fails for any of the following reasons: a bad
pathname, a nonexistent file, a file that is not a SAM or DAM file,
or any other deletion error.

fill_array Function
The fill_array function fills an array with a specified value.

Format: (fill_array a v [m [n]])

Arguments: The argument a must be an array value. Usually it is a
variable that has been bound to an array by means of the setq and
make_array functions.
The argument v is the value to which the elements of the arrays are
to be set. The data type of y must be consistent with the data
type of the array a, as specified in the make_array function that
created the array a.

The arguments m and n, if specified, must be integer values.

Action: The fill_array function returns a value whose data type is
the data type of the elements of the array a.

If the argument m is not specified, let m equal 0.

If the argument n is not specified, let n equal the maximum array
index, which is one less then the number of elements in the arrays,
as specified in the make_array function that created the array a.

The value of m must be greater than or equal to 0 and less than or
equal to n. The value of n must be less than the number of
elements in the array a, as specified in the make_array function
that created the array a.

EMACS assigns the value y to each of the elements of the array a,
beginning with index m and ending with index n.
The fill_array function returns the value v.

A - 6 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

filljend_token_insert_left Function
The fill_end_token_insert_left function wraps to the fill column
and inserts command characters.

Format: (fill_end_token_inse rt_left)

Arguments: None.
Action: EMACS wraps to the fill column and inserts oommand
characters.

fill_end_token_insert_pfx Function
The filljend_token_insertjpfx function wraps to the fill column,
preserving the current whitespace prefix on each line, and inserts
command characters.

Format: (fil1 _end_token_inse rt_pfx)

Arguments: None.
Action: EMACS wraps to the fill column, preserving the current
whitespace prefix on each line, and inserts ccanmand characters.
The indent is similar to cret indent relative.

filljoff Command and Function
The filljoff command or function turns off fill mode.

Command Format: {ESC} X filljoff

Function Format: (filljoff)

Arguments: A numeric argument, if specified, is ignored.
Action: EMACS turns off fill mode.

The filljoff function returns the value NIL.

filljon ODmmand and Function
The filljon command or function turns on fill mode.
Command Format: {ESC} X fill_on

Function Format: (fill_on)

Arguments: A numeric argument, if specified, is ignored.

S e c o n d E d i t i o n A - 7 0

EMACS FUNCTIONS AND COMMANDS

Action: EMACS turns on fill mode so that words are automatically
moved from line to line in order to fill lines to the specified
lengths.

The fill on function returns the value NIL.

filljpara Command and Function

The fill_para command or function fills and optionally adjusts a
paragraph.

Command Format: [{ESC}n] {ESC} X fill_para
or
[{ESC}n] {ESC} Q

Function Format: (filljpara [n])

Argument: The argument n, if specified, must be an integer value.

Action: The filljpara command or function fills the current
paragraph so that each line does not have more than the number of
characters indicated by the function (buffer_info filljcolumn) or
by the command tell_rightjnargin. It rearranges words on the line
so that each line is about the same length. Use set_right_margin
to change the right margin.

If the left margin is greater than zero, the text is indented by
that number of characters. The left margin is specified by the
variable filljprefix, and is displayed by the tell_left_margin
command. Use set_left_margin to change the left margin.

If the argument n is specified and is greater than one, the
paragraph is additionally right-justified.
To undo the results of filljpara, use the untidy command or
function.

find_buffer Function

The findjbuffer function returns a cursor that points to the start
of a specified buffer.

Format: (findjbuffer s)

Argument: The argument s must be a string value.

Action: The find_buffer function returns a cursor value.

EMACS interprets the string s as a buffer name. If a buffer with
that name does not exist, EMACS creates a new buffer with that
name.

A - 7 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

EMACS returns a cursor value pointing to the start of the buffer
whose name is given by the string s.

Example: The following statement

(go_to_cursor (find_buffer "xyz"))
moves the current cursor to the start of the buffer xyz, creating
that buffer if necessary.

find_file Command and Function
The find_file command or function finds a file either in an EMACS
buffer or in the PRIMOS file system.

Command Format: {ESC} X find_file
or
{CTRL-X} {CTRL-F}

Function Format: (find_file s)

Argument: The argument s to the find_file must be a string value.
A numeric argument, if specified, is ignored.

Action: For the find_file cranmand, EMACS prompts you for a file
name, and assigns the string you type to the variable s.
If there is a buffer with a name equal to the value of the string
s, EMACS makes that buffer the current buffer.
If there is no such buffer, EMACS proceeds as follows:

• It searches the PRIMOS file system for a file with names
specified by s. If there is no such file, EMACS terminates
this operation with an error message.

• It creates a new buffer with the buffer name s, and loads
the text of the file into that buffer, making It the current
buffer.

The find_file function returns the value NIL.

Note: You may use PRIMOS conventions in using special characters
and options in your filename string. For example, the string

foo@@ -after 7/22/85

searches for all files beginning with "foo", created since July 22,
1985.

(See the Prime User's Guide manual for complete details.)

S e c o n d E d i t i o n A - 7 2

EMACS FUNCTIONS AND COMMANDS

findjnode Function

The findjnode function returns a dispatch table to a desired mode.

Format: (findjnode m)

Argument: The argument m must be either a string or a quoted atom.

Action: The findjnode function returns a value with the
dispatch_table data type.

The argument m must be the name (either in string or in quoted atom
form) of a mode. The findjnode function returns a dispatch table
for that mode. If the mode does not exist, it will be created.

finishjnacro Command

The f inish_macro coinmand terminates a macro whose keystrokes were
collected beginning with the collectjnacro command.

Format: {ESC} X finishjnacro
o r
{CTRL-X})

Argument: A numeric argument, if specified, is ignored.

Action: Collection of keystrokes is begun with the collectjnacro
command and ended with the finishjnacro command. The finishjnacro
command makes the keystroke collection available as a macro that
can be invoked by the executejnacro command, which is normally
bound as {CTRL-X} E.

first_line_p Function

The firstJLinejp function returns a Boolean value indicating
whether the current cursor position is at the first line in the
b u f f e r .

Format: (first _line_p)

Arguments: None.

Action: The first_linejp function returns a Boolean value. The
returned value is true if the current cursor position points to a
character in the first line of the buffer; otherwise it is false.

f irstlinep Function

The firstlinep function is an abbreviation of the first_line_p
funct ion.

A - 7 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

flush_typeahead Function
The flushjtypeahead function flushes pending keyboard input. It is
usually used for error clean up.
Format: (flush_typeahead)

Arguments: None.
Action: The flush_typeahead function invokes the PRIMOS supervisor
call that flushes typeahead by clearing the keyboard input buffer.

The flush_typeahead function returns the value NIL.

forwardjchar Command and Function
The forward_char command or function moves the cursor forward by a
specified number of characters.
Command Format: [{ESC}n] {ESC} X forward_char

or
[{ESC}n] {CTRL-F}

Function Format: (forwardjchar [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.
If the value of n is 0, no action takes place.

If the value of n is positive, the cursor is moved forward n
characters, stopping if the end of the buffer is reached.
If the value of n is negative, the cursor is moved back (-n)
characters, stopping if the beginning of the buffer is reached.
The forward char function returns the value NIL.

forwardjclause (^xnmand and Function
The forwardjclause command or function moves the cursor forward by
a specified number of clauses.

Command Format: [{ESC}n] {ESC} X forward_clause
or
[{ESC}n] {CTRL-X} {CTRL-Z} {CTRL-E}

Function Format: (forwardjclause [n])

S e c o n d E d i t i o n A - 7 4

EMACS FUNCTIONS AND COMMANDS

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, EMACS moves the cursor forward to
the nth occurrence of a character that delimits a clause. (That
is, EMACS moves the cursor ahead n clauses, leaving the cursor on
the character immediately following the last clause delimiter.)
Cursor movement stops if the end of the buffer is reached.
If the value of n is negative, EMACS moves the cursor back to the
character preceding the (-n)th occurrence of a character that
delimits a clause. (That is, EMACS moves the cursor back (-n)
clauses and leaves it at the character preceding the last clause
delimiter.) Cursor movement stops if the beginning of the buffer
is reached.

The forwardjclause function returns the value NIL.

Note: The characters delimiting a clause are contained in the
global string variable clause_scan__table$.

forward_clausef Function
The forward_clause function moves the cursor forward by a specified
number of clauses, and returns a Boolean value indicating whether
the operation was successful.

Format: (forwardjclausef [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: The forward_clausef function returns a Boolean value.

If n is not specified, let n equal 1.

If the value of n is 0, no cursor movement takes place and
forward_clausef returns the value true.

If the value of n is positive, EMACS moves the cursor forward to
the nth occurrence of a character that delimits a clause. (That
is, EMACS moves the cursor ahead n clauses, leaving the cursor on
the last character following the last clause delimiter.) Cursor
movement stops if the end of the buffer is reached. If the end of
the buffer is reached, forward_clausef returns the value false;
otherwise, forwardjclausef returns the value true.

A - 7 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

If the value of n is negative, EMACS moves the cursor back to the
character preceding the (-n)th occurrence of a character that
delimits a clause. (That is, EMACS moves the cursor back (-n)
clauses leaving it at the character preceding the last clause
delimiter.) Cursor movement stops if the beginning of the buffer
is reached. If the beginning of the buffer is reached,
f o rwa rd_c lause f r e tu rns t he va lue f a l se ; o the rw i se ,
forwardjclausef returns the value true.

Note: The list of characters delimiting a clause may be found in
the global string variable clause_scan_table$.

forward_kill_clause Qaramand and Function

The forward_kill_clause command or function kills text from the
current cursor position to the end of the specified clauses.

Oanmand Format: [{ESC}n] {ESC} X forward_kill_clause
or
[{ESC}n] {CTRL-X} {CTRL-Z} {CTRL-K}

Function Format: (f orward_kil 1 jcl ause [n])

Argument: The argument n, if specified, must be an integer value
whose value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, EMACS kills all the text in the
region starting with the current cursor position and ending with
the end of the nth clause in a forward direction.

If the value of n is negative, EMACS kills all text in the region
ending with the current cursor position, and beginning with the
(-n)th clause in a backward direction.

The forward_kill_clause function returns the value NIL.

Note: The list of characters delimiting a clause may be found in
the global string variable clause_scan_table$.

forward_kill_sentence Ganmand and Function

The forward_kill_sentence command or function kills text from the
current cursor position to the end of the specified sentence.

Command Format: [{ESC}n] {ESC} X forward_kill_sentence
or
[{ESC}n] {ESC} K

S e c o n d E d i t i o n A - 7 6

EMACS FUNCTIONS AND COMMANDS

Function Format: (forward_kill_sentence [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, EMACS deletes all text in the region
beginning with the current cursor position and ending with the end
of the nth sentence in a forward direction.

If the value of n is negative, EMACS deletes all text in the region
beginning with the (-n)th sentence in a preceding direction, and
stopping at the current cursor position.

forward_para Command and Function

The forward_para command or function moves the cursor forward by a
specified number of paragraphs.

Command Format: [{ESC}n] {ESC} X forward_para
or
[{ESC}n] {CTRL-X}]

Function Format: (forwardjpara [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, EMACS moves the cursor forward to
the character prececkng the nth occurrence of a character that
delimits a paragraph. (That is, EMACS moves the cursor forward n
paragraphs, leaving the cursor on the character immediately
following the last paragraph delimiter.) Cursor movement stops if
the end of the buffer is reached.

If the value of n is negative, EMACS moves the cursor backward to
the (-n)th occurrence of a character that delimits a paragraph.
(That is, EMACS moves the cursor back n paragraphs, leaving it at
the character preceding the last paragraph delimiter.) Cursor
movement stops if the beginning of the buffer is reached.

The forwardjpara function returns the value NIL.

Note: Paragraphs are defined as lines beginning with a period, a
blank line, or lines beginning with a space.

A - 7 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

forward_search Function
The forward_search function searches the text buffer for a
specified string, and returns a Boolean value indicating success or
failure.

Format: (forward_search s)

Argument: The argument s must be a string argument.
Action: EMACS searches forward for the string s in your text
buffer, starting with the character at the current cursor position.
If the search is successful, EMACS moves the cursor to the
character following the matching string in the text buffer, and
returns the value true.

If the search fails, the cursor is left unchanged, and the function
returns the value false.

forward_search_command Command and Function
The forward j3earch_(X3mmand command or function searches forward in
your text buffer for a string.
Command Format: {ESC} X forward_search_command

or
{CTRL-S}

Function Format: (forward_searchjcommand [s])

Arguments: A numeric argument, if specified, is ignored.
The argument s, if specified, must be a string value.

Action: If the argument s is not specified, EMACS prompts you for
a string value, which is assigned to the string s.

EMACS searches forward in the text buffer for the string s,
starting with the character in the current cursor position.
If the search succeeds, EMACS moves the current cursor to the
character following the string.

If the search is unsuccessful, EMACS displays an error message.

S e c o n d E d i t i o n A - 7 8

EMACS FUNCTIONS AND COMMANDS

forward_sentence ODmmand and Function

The forward_sentence command or function moves the cursor forward
by the specified number of sentences.

Command Format: [{ESC}n] {ESC} X forwardjsentence
or
[{ESC}n] {ESC} E

Function Format: (forward_sentence [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, EMACS moves the cursor forward to
the nth occurrence of a character that delimits a sentence. (That
is, EMACS moves the cursor ahead n sentences, leaving the cursor on
the character immediately following the last sentence delimiter.)
Cursor movement stops if the end of the buffer is reached.

If the value of n is negative, EMACS moves the cursor back to the
character preceding the (-n)th occurrence of a character that
delimits a sentence. (That is, EMACS moves the cursor back (-n)
sentences, and leaves it at the character preceding the last
sentence delimiter.) Cursor movement stops if the beginning of the
buffer is reached.

The forward_sentence function returns the value NIL.

Note: The characters delimiting a sentence are in the global
string variable senten<ce_sc»n_table$.

forwardjsentencef Function

The forwardjsentencef function moves the cursor forward by a
specified number of sentences, and returns a Boolean value
indicating whether the operation was successful.

Format: (forward_sentencef [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: The forward_sentencef function returns a Boolean value.

If the value of n is not specified, let n equal 1.

If the value of n is 0, no cursor movement takes place, and
forward_sentencef returns the value true.

A - 7 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

If the value of n is positive, EMACS moves the cursor forward to
the nth occurrence of a character that delimits a sentence. (That
is, EMACS moves the cursor ahead n sentences, leaving the cursor on
the character immediately following the last sentence delimiter.)
If the end of the buffer is reached, cursor movement stops, and
forward_sentencef returns the value false; otherwise, it returns
the value true.

If the value of n is negative, EMACS moves the cursor back to the
character preceding the (-n)th occurrence of a character that
delimits a sentence. (That Is, EMACS moves the cursor back (-n)
sentences, leaving it at the last sentence delimited.) If the
beginning of the buffer is reached, cursor movement stops and
forward_sentencef returns the value false; otherwise, it returns
the value true.

Note: The characters delimiting a sentence are in the global
string variable sentence_scan_table$.

forwardjword Command and Function

The forward_word command or function moves the cursor forward by a
specified number of words.

Command Format: [{ESC}n] {ESC} X forwardjword
or
[{ESC}n] {ESC} F

Function Format: (forwardjword [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, EMACS moves the cursor forward to
the nth occurrence of a character that immediately follows a word.
(That is, EMACS moves the cursor ahead n words, leaving the cursor
on the whitespace character immediately following the end of the
words.) Cursor movement stops if the end of the buffer is reached.

If the value of n is negative, EMACS moves the cursor back to the
(-n)th occurrence of a character that begins a word. (That is,
EMACS moves the cursor back (-n) words, leaving it at the first
character of that word.) Cursor movement stops if the beginning of
the buffer is reached.

The forwardjword function returns the value NIL.

Note: The token_chars atom contains a list of the characters that
define a word or token.

S e c o n d E d i t i o n A - 8 0

EMACS FUNCTIONS AND COMMANDS

found_file_hook Command and Function

The found_file_hook command or function checks a suffix and turns
on the mode associated with that suffix.

Command Format: {ESC} X found_file__hook

Function Format: (found_file_hook)

Arguments: A numeric argument, if specified, is ignored.
Action: EMACS examines the suffix of the file associated with the
current buffer, and turns on the mode associated with that suffix.
(See the EMACS Reference Guide, Appendix A.)
The found_file_hook function returns the value NIL.

fset Function

The fset LISP function sets the function cell of an atom.
Format: (fset a f)

Arguments: The argument a is any atom, usually quoted. The
argument f is a function.

Action: The fset function sets the function cell of the atom a to
the value f, and returns the value f.

Note: Every PEEL symbol has associated with it a function cell (or
function value) similar to its ordinary value. Usually you set the
function cell by means of a defun or defcom. The fset function
lets you set it explicitly, and the fsymeval function lets you
obtain the function call explicitly.

fsymeval Function

The fsymeval LISP function returns the contents of the function
cell of an atom.

Format: (fsymeval a)

Argument: The argument a must be an atom.

Action: The fsymeval function returns the function cell of the
atom a. The value returned may have any data type. If the
function cell is not set, fsymeval returns NIL.

fsymeval usually returns a value of type handler for commands and
type function for functions.

(See the fset function for further information.)

A - 8 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

function Data Type

This is a data type. Functions are objects that contain executable
code. A function contains all the information needed to call this
code. This includes the number of expected arguments, their data
types, and the type of value that will be returned. Built-in
functions have their code written in PL/Ir while user written
functions are written in the PEEL extension language and have list
structure as their executable code.

function_info Function
The function_info function returns information about a PEEL
function.

Format: (function_info f p [n])

Arguments: The argument f must have the data type function, as
returned by the fsymeval function, for example. The argument £ is
an atom representing the property you wish to determine. The list
of legal values for p_ is given below.

The argument n, if specified, must be an integer value.

Action: The data type of the value returned by the function_info
function depends upon the symbol p_.

The following table lists the legal values for _>, the data type of
the value returned by function_info, and the function property
corresponding to the value of p_.

return_value

argument_type

specialjEorm

Data Type Property

integer Data type of the returned value.
(See typef for meaning of
integral value.)

integer Data type of the nth argument.
Boolean True if arguments to handler are

passed unevaluated in a list (as
if Strest was used for all
arguments for a defcom).

user defined function Boolean True if code is PEEL rather than
PL/I.

returns a value Boolean True if the function returns a
value.

Second Edition A-82

EMACS FUNCTIONS AND COMMANDS

required_arguments integer
optional_arguments integer

evaluate_argument Boolean

c l e a n u p j i a n d l e r a n y

Number of required arguments.
Number of optional arguments.

True if the "Stquote" defun
option applies to the nth
argument, false otherwise.
The handler to be invoked if the
function is aborted. (NIL if
none established.) Atom of
cleanupjiandler is returned.

get Function
The get LISP function returns the value associated with a tag in a
given property list (plist).
Format: (get pi t)

Arguments: The arguments r_l and t must be atoms, usually quoted.

Action: If the atom j_l is an atom with a property list, and if the
argument t appears as a tag in that property list, the get function
returns tEe value associated with the tag t. Otherwise, the get
function returns the value NIL.

Note: A tag and value can be added to an atom's property list by
means of the putprop function, and can be removed by means of the
remprop.

Example: Suppose that the property list of the atom Jane is

((age 6) (hair blonde) (eyes blue))

then the function

(get 'Jane 'age)

returns the value 6, while the function

(get 'Jane 'weight)

returns the value NIL.

getjcursor Function

The get_cursor function returns a list of all the cursor properties
that may be obtained by the cursor_info function.

Format: (get_cursor [cur])

A-83 Second Edition

EMACS EXTENSION WRITING GUIDE

Argument: The argument cur, if specified, must be a cursor value.
Action: The get jcursor function returns a list value.

If the argument cur is not specified, let cur equal the current
cursor position.

The get_cursor function returns a list containing all values that
may be obtained by the cursor_info function. These values are:

• A string value containing the buffer name of the cursor cur

• An integer value containing the line number

• An integer value containing the character position on the
line

• A Boolean value containing the sticky flag

The get jcursor function returns a list containing those values.

Example: A typical value returned by get_cursor might be:
("main" 6 11 false)

get_filename Command and Function
The get_filename command or function retrieves the current pathname
of the current buffer and inserts it at point.

Coinmand Format: {ESC} X get_filename
or
{CTRL-X} {CTRL-Z} {CTRL-F}

Function Format: (get_filename)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS forms a string containing the current buffer's
associated pathname and inserts it into the buffer at the current
cursor position.

The get_filename function returns the value NIL.

getjaiame Function

The getjpname function returns the print name of an atom.

Format: (get_pname a)

Argument: The value of the argument a must be a quoted atom.

S e c o n d E d i t i o n A - 8 4

EMACS FUNCTIONS AND COMMANDS

Action: The get_pname function returns a string value that is the
name of the atom.

Example: The function

(get_pname 'xyz)
returns the string "xyz".

get_tab Command and Function
The get_tab command or function restores tabs that were previously
saved.

Command Format: {ESC} X get_tab [s] [t]

Function Format: (get_tab [s] [t])

Arguments: A numeric argument, if specified, is ignored.
The arguments s and t, if specified, must be string values.

Action: If the argument s is not specified, EMACS prompts you for
a filename. The typed string is assigned to the variable s. If
the argument t is not specified, EMACS prompts you for the name by
which the tabs are stored in the file. The typed string is
assigned to the variable t.
The string s must be the filename of a file that was created with
the save_taB" command or function, and the string t must be a name
of tabs in that file. EMACS restores the tab settings to their
value at the time that the file was saved.

The get_tab function returns the value NIL.

go_to_buffer Function
The go_to_buffer function positions the cursor at the beginning of
the specified buffer and returns that cursor.

Format: (go_to_buffer s)

Argument: The argument s must be a string value.

Action: The go_to_buffer function returns a cursor value.

EMACS moves the current cursor to the beginning of the buffer
specified by the string s. The go_to_buffer function returns that
cursor position.

A - 8 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

go_to_cursor Function
The go_to_cursor function moves the current cursor to the specified
cursor.

Format: (go_to_cursor cur)

Argument: The argument cur must have the cursor data type.

Action: EMACS moves the current cursor to the position specified
by the argument cur. The go_to_cursor function returns a cursor
value equal to the new cursor position.

go__to_hpos Function

The go_to__hpos function goes to the specified horizontal position
on the current line.

Format: (go_to_hpos n)

Argument: The argument n must be an integer value.

Action: The go_to_hpos function returns a Boolean value.

EMACS attempts to move the cursor to the horizontal position
specified by the argument n. If this is possible, the go_to_hpos
function returns the value true; otherwise, it returns the value
f a l s e .

It is possible under the following conditions:

• The value of n is positive and smaller than the number of
characters on the current line.

• The value of n is positive and smaller than the value of the
line margin, and two-dimensional mode is on.

go_to_window Function

The go_to_window function moves the cursor to the buffer associated
with the specified window.

Format: (go_to_window w)

Argument: The data type of the argument w must be a window.

Action: The argument w must be a window that is on the screen.
The go_to_window function makes the cursor associated with the
window the current cursor. It does not change the association of a
window and a cursor.

The go_tojwindow function returns the value NIL.

S e c o n d E d i t i o n A - 8 6

EMACS FUNCTIONS AND COMMANDS

gotoJLine Command and Function

The goto_jline command or function moves the current cursor to a
specified line in the buffer.

Command Format: [{ESC}n] {ESC} X goto_line
or
[{ESC}n] {ESC} G

Function Format: (goto_line [n])

Argument: The argument n, if specified, must be an integer value.

Action: If n is not specified, let n equal 1.

If n is less than or equal to 1, EMACS moves the cursor to the
first line of the buffer.

If n is larger than the number of lines in the buffer, EMACS moves
the cursor to the last line of the buffer.

Otherwise, EMACS moves the cursor to line n of the buffer.

The gotoJLine function returns the value NIL.

handler Data Type

The handler data type represents a handler, which is a command as
defined by using defcom.

handler JLnfo Function

The handler_info function gets or sets information about a handler.

Format: (handler_info h p [v])

Arguments: The argument h must have the handler data type, usually
as returned either from the cur rent Jiandler function or from
fsymeval of an atom returned from dispatch_info.

The argument r_ must be one of the atoms listed below under action.

The argument y, if specified, must have a data type that is
compatible with the atom £.

Action: The handler_info function returns a value whose data type
depends upon the argument p.

A - 8 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Each value of the argument p corresponds to information about the
handler h. The following table gives the possible values for the
argument £, along with their associated data types and meanings.

E D a t a T y p e

n a m e s t r i n g

h a n d l e r f u n c t i o n o r
PL/l_subroutine

i s j p r e fi x B o o l e a n

explanat ion str ing

data_yalue any

uses_character_argument
Boolean

Property

Name of the handler.

The function code of the command.
I f i n t e r n a l , i t i s o f t y p e
PLI_subrout ine; i f external, of
type function.

Command has specified Sprefix in
its header.

The Sdoc documentation string
associated with the command. If
none, null string.

Any data value may be here.

Command has Schararg in its
header.

If the value y is not specified, the handler_info function returns
the information associated with the argument £. If the argument y
is specified, the handler_info function sets the corresponding
property value to v, and returns the old value of the property.

If the command is internal or shared, none of the values may be
changed. Otherwise, any value except the name may be changed.

have_inputjp Function

The have_input_p function returns a Boolean value indicating if
there is pending keyboard input.

Format: (have_input_p)

Arguments: None.

Action: The have_input_p function returns a Boolean value. The
value is true if there is pending keyboard input; otherwise, it is
f a l s e .

Second Edition A-88

EMACS FUNCTIONS AND COMMANDS

hcol Command and Function

The hcol coinmand or function sets or queries the horizontal column,
that is, the column number of the leftmost column displayed on your
screen.

Command Format: [{ESC}n] {ESC} X hcol

Function Format: (hcol [n])

Argument: The numeric argument n, if specified, must be an integer
value.

Action: The argument n, if specified, must be positive. If n is
specified, EMACS sets the horizontal column (for horizontal
scrolling) to the value specified by n. The result is that the
leftmost column displayed on your screen will be text column n.

EMACS displays the current horizontal column value in the
minibuffer. (This happens whether the argument n is specified or
not.)
The hcol function returns the value NIL.

helpjchar Command
The helpjchar command invokes the explain command.

Format: {ESC} X helpjchar
or
{CTRL-J

Arguments: A numeric argument, if specified, is ignored.
Action: The helpjchar coinmand invokes the explain facility that
provides you with help information.

highjbitjoff Function
The highjbitjoff function turns off the high-order bits in each
character of a string.

Format: (highJ}it_off s)

Argument: The argument s must be a string or character value.
Action: The highjbitjoff function returns a string value. The
string value is obtained by turning off the high-order bit in each
character of string s.

A - 8 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

highjbitjon Function

The highjbitjon function turns on the high-order bits in each
character of a string.

Format: (highjbitjon s)

Argument: The argument s must be a string or character value.

Action: The highjbitjon function returns a string value. The
string value is obtained by turning on the high-order bit in each
character of string s.

hscroll Command and Function

The hscroll command sets hcol to the current column position.

Ccgnmand Format: {ESC} X hscroll

Function Format: (hscroll)

Arguments: A numeric argument, if specified, is ignored.

Action: Let k be the horizontal position of the current cursor.
Then EMACS executes

(hcol k)

The hscroll function returns the value NIL.

if Special Form

The if special form allows you to perform conditional program
execution.

Format: (if b sl else s2)

Arguments: The argument b must have a Boolean value. The
arguments sl and s2 must be PEEL statements.

Action: If the value of b is true, then sl is executed;
otherwise, s2 is executed.

The if special form returns the value NIL.

if _at Special Form

The if_at special form performs conditional execution depending on
the string to the right of the current cursor position.

Format: (ifjat s sl else s2)

S e c o n d E d i t i o n A - 9 0

EMACS FUNCTIONS AND COMMANDS

Arguments: The argument s must be a string value. The arguments
sl and s2 must be PEEL source statements.

Action: If the text to the right of the current cursor position
equals the characters of the string s, then sl is executed;
otherwise, s2 is executed.
The if_at special form returns the value NIL.

Note: The use of if_at is the same as

(if (looking_at "string") ...))

ignorejpref ix Command
The ignorejpref ix command aborts a partially completed command
sequence.

Format: {ESC} X ignorejprefix

Arguments: None.

Action: This command only makes sense when bound. It is normally
bound to the {CTRL-G} entry in dispatch tables referenced through a
prefix. For example, {CTRL-X} {CTRL-G} is bound to ignorejpref ix,
so that you can abort a command prefixed by {CTRL-X}.

indent_lineJ:o_hpos Command and Function
The indent_JLineJx>_hpos command or function indents the current
line to the specified horizontal position.

Command Format: [{ESC}n] {ESC} X indentJ.ine_to_hpos

Function Format: (indent JL ine Jo Jipos n)

Argument: The argument n must be an integer value.
Action: The indent_line_to_hpos function returns a Boolean value.

EMACS deletes all whitespace characters from the beginning of the
current line, and then inserts n blanks.

The indent_JLineJ:o_hpos function returns the value true if the
operation succeeds; otherwise, it returns false.

indent_relative Command and Function

The indent_relative command or function indents the current line to
the same horizontal position as the preceding line.

A - 9 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Command Format: [{ESC}n] {ESC} X indent_relative
or
[{ESC}n] {ESC} I

Function Format: (indent_relative [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: EMACS performs the following steps:

• Inserts or deletes whitespace characters at the beginning of
the current line, so that the first nonblank character of
the line is indented exactly as much as the first nonblank
character of the preceding line. (Note: If the current
line is the first line of the buffer or the preceding line
contains only whitespace, then no blanks are inserted at the
beginning of the line.)

• Leaves the cursor at the first nonblank character of the
l ine .

• If n is not specified, let n equal 0.

• Executes the function

(insertj^b n)
If n is positive, this inserts n tabs. If n is negative,
this moves back (-n) tab stops.

The indent_relative function returns the value NIL.

indent_to_fill_pref ix Command and Function
The indentJ:o_fill_prefix command or function indents the current
line to the current left margin.

Command Format: [{ESC}n] {ESC} X indentJto_fill_prefix
or
[{ESC}n] {ESC} {CTRL-I}

Function Format: (indentJoJEilljprefix [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, then n lines of text, beginning with
the current one and continuing forward, are indented.

S e c o n d E d i t i o n A - 9 2

EMACS FUNCTIONS AND COMMANDS

If the value of n is negative, then -n lines of text, beginning
with the current one and proceeding backward, are indented.

To indent a line of text, EMACS proceeds as follows:

• If the line is null (contains no characters), no action
takes place. Otherwise:

• EMACS removes all leading whitespace from the beginning of
the line.

• EMACS inserts filljprefix spaces at the beginning of the
line.

Note: The value associated with the atom filljprefix is set by the
set_leftjnargin command.
The indent_to_fill_prefix function returns the value NIL.

index Function

The index function, which is like the PL/I function of the same
name, returns the position of the second string within the first.
Format: (index sl s2)

Arguments: The arguments sl and s2 must be string or character
values.

Action: The index function returns an integer value.

EMACS searches the string sl for the string s2 as a substring.
(For example, "CDE" is a substring of "ABCDEF^T but "CDF" is not.)
If the string s2 appears as a substring of sl, the index function
returns the position of the first character of the first occurrence
of string §2 within sl. If s2 does not appear as a substring,
index returns the value 0.

Example: The function

(index "ABCDEF" "CDE")
returns the value 3, because "CDE" appears as a substring starting
in character position 3 of "ABCDEF".

The function

(index "ABCDEF" "CDF")

returns the value 0, because "CDF" is not a substring of "ABCDEF".

A - 9 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

i n f o _ m e s s a g e S p e c i a l F o r m ^ %

The infojnessage special form displays an information message in
the minibuffer.

Format: (infojnessage sl [s2 ... s8])

Arguments: The infojnessage special form takes at least one
argument and no more than eight arguments. All arguments must have
the string or character data type.

Action: EMACS concatenates all arguments together, as described
with the catenate function, and displays the concatenated string in
the minibuffer. The message will not appear on the screen until
the next screen redisplay occurs. Use errorjnessage if you want to
force a message to be displayed while redisplay is inhibited. --^

initJ.ocal_displays Function
The init_local_displays function clears previous printout material
from the screen and starts "printout" mode.

Format: (init_localj3isplays s [b])

Arguments: The argument s must have a string or character value. >^i
The argument b, if specified, must be a Boolean value.

Action: EMACS clears the main text window on your screen of
previous printout and information messages, displays the string s
on the first line, and enters "printout" mode.

If the argument b is true or unspecified, the line is terminated at
that point. If the value of b is specified and false, the next
call to localjdisplayjgenerator will append its data to the end of
t h e c u r r e n t l i n e . * ^ \

Example: The function sequence

(print "The previous message")
(initJ.ocal_displays "23")

would clear "The previous message" from the screen and print the
number 23 at the top.

i n s e r t F u n c t i o n c ^

The insert function inserts a stringjinto the text buffer at the
specified cursor position.
F o r m a t : (i n s e r t s [c u r]) * ^ ^

S e c o n d E d i t i o n A - 9 4

EMACS FUNCTIONS AND COMMANDS

Arguments: The argument s must have a string value. The argument
cur, if specified, must have a cursor data type value.

Action: The insert function returns a string value.

If the argument cur is specified, EMACS moves the current cursor to
the position specified by the argument cur.

EMACS inserts the characters of string s into the text buffer at
the current cursor position, and returns the value of string s.

insertjouf Command and Function

The insertjouf coinmand or function takes the contents of a text
buffer and inserts it into your current text buffer at the current
cursor position.

Command Format: {ESC} X insertjouf
or
{CTRL-X} {CTRL-Z} I

Function Format: (insertjouf [s])

Arguments: A numeric argument, if specified, is ignored.

The argument s, if specified, must be a string value.

Action: If the argument s is unspecified, EMACS prompts you for
the name of a buffer. The resulting string is assigned to the
variable s.

EMACS inserts the contents of the buffer specified by the string s
into your current text buffer, at the current cursor position. The
cursor is left at the beginning of the inserted material.

The insert buf function returns the value NIL.

insert_buff Command and Function

The insertjouff command or function is an alternate name for the
insert buf command and function.

insert_f ile Command and Function
The insert_file command or function inserts a disk file at the
current cursor position.

Command Format: {ESC} X insert_file
or
{CTRL-X} I

A - 9 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Function Format: (insert_file [s])

Arguments: A numeric argument, if specified, is ignored.

The argument s, if specified to the insert_file function, must have
a string value.

Action: If the argument s is not specified, EMACS prompts the user
for a pathname, and assigns the typed string to the string s.

EMACS opens the file whose pathname is the string s, and inserts
the text of that file at the current cursor position. The cursor
is left at the beginning of the inserted material.

The insert_file function returns the value NIL.

insert Juab Function

The insert_tab function inserts whitespace from the current cursor
position to the next tab stop.

Format: (inse rt _tab [n])

Argument: The argument n, if specified, must have an integer
value.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action is taken.

If n is positive, EMACS repeats the following step n times: insert
whitespace at the current cursor position to move the cursor to the
next tab stop position.

If n is negative, EMACS performs

(typejtab n)

which moves the cursor back (-n) tab stops.

The insertj-ab function returns the value NIL.

insert_version Function

The insert_version function inserts the current EMACS version
number into the text buffer at the current cursor position.

Format: (insert_version)

Arguments: None.

S e c o n d E d i t i o n A - 9 6

EMACS FUNCTIONS AND COMMANDS

Action: EMACS inserts the current version number into the text
buffer at the current cursor position.

The format of the inserted characters is illustrated by the
following:

EMACS version 20.0.4e

The insert_version function returns the value NIL.

integer Data Type
A variable with the integer data type can have only integers as
values.

integer_to_string Function
The integer_to_string function converts an integer value to a
string value.
Format: (integer_to_string n [k])

Arguments: The argument n, and the argument k if specified, must
be integer values.

Action: The integer_to_string function returns a string value.

EMACS forms a new string s as follows:

• EMACS converts the integer n to a string representation in
the decimal number system, with a - in front, if negative.
Let s equal this string.

• If the argument k is specified, and if the string s has
fewer characters than the value of k, EMACS inserts
additional blanks in the front of the string s, so that the
length of the resulting string is equal to the value of k.

• If the argument k is specified, and if the string s has more
characters than the value of k, EMACS replaces the string s
with a new string containing k *'s.

EMACS returns the string s.

intern Function

The intern function converts a string argument to an atom with the
same name. This is the inverse of the get_pname function.

Format: (intern s)

A - 9 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Argument: The argument s must be a string or character value.

Action: The intern function returns an atom value.

EMACS returns an atom whose name is given by the characters in the
string s, creating such an atom if necessary.

killj.ine Canmand and Function

The killj.ine command or function deletes text from the current
cursor position to the end of the current line.

Conimand Format: [{ESC}n] {ESC} X kill_line
or
[{ESC}n] {CTRL-K}

Function Format: (kill_line [n])

/Argument: The argument n, if specified, must be an integer value.

Action: If n is not specified, let n equal 1.

If n equals 0, no action is taken.

If n is greater than 0, EMACS deletes text to the end of the line,
and at end of line deletes the newline character. Then EMACS
deletes (n-1) additional lines.

If n is negative, EMACS deletes n lines above the cursor line and
from the cursor to the beginning of the current line.

The kill_line function returns the value NIL.

Note: The killed text is placed on the kill ring and can be
recalled via yank.

kill_region Command and Function
The kill_region command or function deletes all text between the
mark and the current cursor position, placing it on the kill ring.

Command Format: {ESC} X killjregion
or
{CTRL-W}

Function Format: (kill_region)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS deletes all text in the current region, that is, all
text between the mark and the current cursor position.

S e c o n d E d i t i o n A - 9 8

EMACS FUNCTIONS AND COMMANDS

The kill_region function returns the value NIL.

Note: The killed text is placed on the kill ring and can be
recalled via yank_region.

kill_rest_of Jouffer Command and Function

The kill_rest_ofJouffer command or function deletes all text from
the current cursor position to the end of the buffer.

Command Format: {ESC} X kill_rest_ofJouffer
or
{ESC} {CTRL-D}

Function Format: (kill_rest_of Jouffer)

Arguments: None.

Action: EMACS deletes all text from the current cursor position to
the end of the current text buffer.

The kill_rest_of Jouffer function returns the value NIL.

Note: The killed text is placed on the kill ring and can be
recalled via yank.

lambda Special Form

This is the same as LISP lambda. It is a special function that
builds a function object from an argument list and program body.

(lambda (argument JL ist) body J. body_2 ...)

Note: The syntax for lambda is the same as for defun, except that
lambda defines a function that is unnamed. Defun creates a named
function with a global scope. You use lambda in let lists or for
fsets, to bind them to a function or a handler.

lastj.inejp Function

The last_!inejp function tests whether the current line is the last
line in the buffer.

Format: (last_line_p)

Arguments: None.

Action: The lastj.inej? function returns a Boolean value. The
value is true if the line at the current cursor position is the
last line in the buffer; otherwise, it returns false.

A - 9 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

lastlinep Function

The lastlinep function is an abbreviation of the last_line_p
func t i on .

ld Command and Function

The ld command or function, which is permitted in SUI only, does a
PRIMOS LD command.

Command Format: {ESC} X ld

Function Format: (ld)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS executes a PRIMOS LD command at the current attach
point. This command is available only in SUI.

leavejonejwhite Command and Function

The leavejonejwhite command or function deletes all extra
whitespace characters around point.

Command Format: {ESC} X leavejonejwhite
or
{ESC} {SPACE}

Function Format: (leavejonejwhite)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS deletes all whitespace around the cursor position
and inserts a single blank.

The leavejonejwhite function returns the value NIL.

let Special Form

The let special form is the same as LISP let. It locally binds
variables to values, and, using those bindings, executes a body of
expressions. The first thing in the special form is a list of
lists. Each of the sublists consists of a variable and a value to
bind to it, as in:

(let ((variablel valuel)
(variable2 value2)

body)

S e c o n d E d i t i o n A - 1 0 0

EMACS FUNCTIONS AND COMMANDS

The values are evaluated and are bound to their respective
variables, and then the expressions of the body are executed in the
order specified. The variables may assume values of any type, not
just those of the values bound to them. When the let body is
finished or otherwise executed, the variable bindings are popped.

Note: The difference between let and set is that let defines
variables with local scope and set defines variables with global
scope.

Example: The form

(let ((x 5))(print x))

prints the value 5.

line_isjDlank Function
The line_is_blank function tests whether the current line is blank.

Format: (line_isJolank)

Arguments: None.
Action: The line_isJolank function returns a Boolean value. The
value is true if the current line contains only whitespace
characters; otherwise, it is false.

line_number Function

The linejiumber function returns the line number at a specified
cursor position.

Format: (line_number cur)

Argument: The argument cur must have a cursor value.

Action: The line_number function returns an integer value. The
value returned equals the line number of the line to which the
cursor value cur points.

Note: This function is the same as

(cursor_info cur line_num)

lines_in_file Function

The lines_in_file function returns the number of lines in a file.
Format: (lines JLnJEile)

A - 1 0 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Arguments: None.

Action: The lines_in_file function returns an integer value equal
to the number of lines in the current buffer.

lisp_comment Command and Function

The lisp_comment command or function moves the cursor to the LISP
comment column and places a semicolon (;) in that position.

Command Format: {ESC} X lisp_corament
or
{ESC};

Function Format: (lisp_comment)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS inserts blanks into your text buffer so that the
cursor position is moved to the LISP comment column, usually column
40. EMACS inserts a semicolon (;) at that point.

The lisp_comment function returns the value NIL.

Note: If you wish to change the default LISP comment column, set
the value of the internal variable lisp_comment_column to the
desired new value.

lispjoff Command and Function

The lisp_off command or function turns off LISP mode.

Command Format: {ESC} X lisp_off

Function Format: (lisp_off)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS turns off LISP mode in the current buffer.

lisp_on Command and Function

The lisp_on command or function turns on LISP mode.

Command Format: {ESC} X lisp_on

Function Format: (lispjon)

Argument: A numeric argument, if specified, is ignored.

S e c o n d E d i t i o n A - 1 0 2

~ >

EMACS FUNCTIONS AND COMMANDS

Action: EMACS turns on LISP mode in the current buffer. In this
mode, EMACS assumes that your buffer contains a PEEL program and
provides additional syntax checking capabilities.

list Function

The list function returns a list of its arguments.

Format: (list vl [v2 ... v8])

Arguments: There must be at least one argument and no more than
eight arguments. The arguments may have any data type.

Action: The list function returns a value with a list data type.
The value returned is a list of the arguments.

Example: (list 'a 'b *c 'd) evaluates to (abe d)

listJouffers Command

The list Jouffers command lists all user-created text buffers.

Command Format: {ESC} X list Jouffers
or
{CTRL-X} {CTRL-B}

Argument: A numeric argument, if specified, is ignored.

Action: EMACS overwrites the text screen with a list of all active
external (that is, user-created) buffers. To restore the screen,
you may use {CTRL-G}.
Note: This command will not show empty buffers or buffers in which
(buffer_info dontjshow) is true.

listjdir Function

The listjdir function lists directory information.

Format: (listjdir p [optl ... opt7])

Arguments: The argument _> must be a string value. The arguments
optl through opt7, if specified, must be among the atoms listed
below.

A - 1 0 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Action: EMACS lists directory information for the wildcarded
pathname specified by the argument _>. The following options may be
s p e c i fi e d :

O p t i o n E f f e c t

fi l e s A l i s t o f fi l e n a m e s i s r e t u r n e d .

d i r e c t o r i e s A l i s t o f d i r e c t o r i e s i s r e t u r n e d .

s e g d i r s A l i s t o f s e g m e n t d i r e c t o r i e s i s
returned.

entry j iames Only the entry name port ion of each
pathname is retained.

inser t jnames The d i rec to ry in fo rmat ion i s inser ted
into the current text buffer at the
current position, one entry per line.

s o r t e d N a m e s a r e s o r t e d a l p h a b e t i c a l l y .

no_error jnessages Error messages are suppressed.

The l ist jdir function returns a l ist of al l the str ings of
directory entries.

loadjcompiled Command and Function

The load_compiled command or function loads a fasload file that was
saved by means of the dump_file command.

Command Format: {ESC} X loadjcompiled

Function Format: (loadjcompiled [sj)

Arguments: A numeric argument, if specified, is ignored.

The argument s, if specified, must be a string or character value.

Action: If the argument s is not specified, EMACS prompts you in
the minibuffer with "FasoTump file name:". The characters that you
type are assigned to the string s.

EMACS forms a file name by appending the suffix .EFASL to the
string specified by the variable s. EMACS loads and executes the
PEEL program that was saved in that file, usually with a previous
dumpjEile command.

S e c o n d E d i t i o n A - 1 0 4

EMACS FUNCTIONS AND COMMANDS

load_lib Command and Function

The loadJLib command or function loads a fasload format file.

Command Format: {ESC} X loadJ.ib

Function Format: (loadJ.ib s)

Arguments: A numeric argument, if specified, is ignored.
The argument s to the loadJ.ib function must be a string.

Action: EMACS opens for input a file whose name is obtained by
adding the suffix .EFASL to the string s. EMACS loads and executes
that file as a fasload file. EMACS prints a message indicating
whether the load was successful.

The loadJLib function returns the value NIL.

load_package Coinmand and Function
The loadjpackage command or function loads a package.

Command Format: {ESC} X load_package

Function Format: (loadjpackage [s])

Argument: The argument s, if specified, must be a string or
character value.
Action: If the string s is not specified, EMACS prompts you for a
pathname and assigns the string you type to the variable s.
EMACS opens the pathname specified by the string s, loads that
package, and then executes it.
The loadjpackage function returns the value NIL.

loadjpljsource Command and Function
The loadjpljsource command or function loads and executes a PEEL
source file.

Command Format: {ESC} X load_pl_source

Function Format: (loadj)l_source [s])

Argument: The argument s, if specified, must be a string or
character value.

Action: If the argument s is not specified, EMACS prompts you for
a file name and assigns the string you specify to the variable s.

A - 1 0 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

EMACS opens the file specified by the string s and executes the
text in that file as a PEEL source program.

The loadjpl_source function returns the value NIL.

localjdisplayjgenerator Function

The localjdisplayjgenerator function displays a line on your screen
in "printout" mode.

Format: (localjdisplayjgenerator s [b])

Arguments: The argument s must be a string or character value.
The argument b, if specified, must be a Boolean value.

Action: EMACS displays the string s on your screen in "printout"
mode.

If the argument b is true or unspecified, the output line is
terminated at that point. If the argument b is false, the next
call to localjdisplayjgenerator will appenbT its data to the end of
the current line.

Note: The major difference between the localjdisplayjgenerator
function and the print function is that localjdisplayjgenerator
does not put quotation marks around displayed string arguments.

looked_at Function

The looked_at function tests whether the text preceding the current
cursor position is the same as a string argument.

Format: (looked_at s)

Argument: The argument s must be a string or character value.

Action: The looked_at function returns a Boolean value. If the
characters in the text buffer preceding the current cursor position
are the same as the string s, then looked_at returns true;
otherwise, it returns false.

Example: The function

(if (looked_at "house") ...)

returns true if the characters preceding the current cursor
position are the string "house".

S e c o n d E d i t i o n A - 1 0 6

EMACS FUNCTIONS AND COMMANDS

looking_at Function

The looking_at function tests whether the characters in your buffer
beginning at the current cursor position equal a given string
value.

Format: (looking_at s)

Argument: The argument s must have a string or character value.

Action: The looking_at function returns a Boolean value. If the
characters in your text buffer, beginning with the character at the
current cursor position and continuing to the right, are equal to
the characters of the argument s, then the value returned is true;
otherwise, the value is false.

looking_at_char Function

The looking_at_char function tests the character at the current
cursor position.

Format: (looking_at_char c)

Argument: The argument c must be a character value.

Action: The looking_at_char function returns a Boolean value. The
value is true if the character at the current cursor position is
the same as the argument c; otherwise the value is false.

Note: This is exactly the same as

(looking_at c)

where c is character type.

lowercase_region Command and Function

The lowercase_region command or function changes all the uppercase
letters in a region to lowercase.

Command Format: {ESC} X lowercase_region
or
{CTRL-X} {CTRL-L}

Function Format: (lowercase_region)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS changes all the uppercase letters in the region
between mark and point to lowercase.

A - 1 0 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Caution: This command must be used with extreme care. If it is
mistakenly applied to the wrong region of text in uppercase and
lowercase, its effect must be undone manually.

The lower case _region function returns the value NIL.

lowercasejword Command and Function

The lowercasejword command or function changes the text from the
current cursor position to the end of the word into lowercase.

Ccgnmand Format: [{ESC}n] {ESC} X lowercasejword
or
{ESC} L

Function Format: (lowercasejword [n])

Argument: The argument n, if specified, must be an integer value.

Action: If the argument n is not specified, let n equal 1.

If the value of n is positive, EMACS converts to lowercase all
uppercase letters in the region from the beginning of the current
word (or the next word, if the cursor is on whitespace) to the end
of the nth word, moving forward. The cursor moves to the end of
that region.

If the value of n is negative, EMACS changes to lowercase all
uppercase letters in the region ending at the end of the current
word (or the previous word, if the cursor is on whitespace or the
beginning of a word) and beginning at the beginning of the (-n)th
word preceding the current cursor position. The cursor is left
unchanged.

The lowercase word function returns the value NIL.

majorjwindowjcount Function

The majorjwindowjcount function returns the number of major windows
presently on the screen.

Format: (majorjwindowjcount)

Arguments: None.

Action: The majorjwindowjcount function returns an integer value.
The integer value equals the number of major windows. You may use
this number with doji_times and select_any_window to loop through
the windows.

S e c o n d E d i t i o n A - 1 0 8

EMACS FUNCTIONS AND COMMANDS

make_array Function

The make_array function creates an array and returns it.

Format: (make_array d n)

Arguments: The argument d must be a quoted atom representing a
legal PEEL data type. The "argument n must be a positive integer.

Action: The make_array function returns an array value. The
make_array function creates an array of n elements, each of which
has the data type d, and returns the resulting array.

Example: The statement

(setq boxes (make_array 'integer 5))

creates an array called boxes. This array contains five integer
elements, numbered 0 through 4.

makejcursor Function

The make_cursor function returns a cursor value generated from the
arguments.

Format: (makejcursor s ln cp [st])

Arguments: The argument s must be a string value. The arguments
In and cp must be integer values. The argument st, if specified,
must be a Boolean value.

Action: The makejcursor function returns a cursor value.

If the argument st is not specified, let st equal true.

EMACS forms a cursor value with buffer name specified by the string
s, line number specified by the integer value In, character
position specified by the integer value ego, and sticky flag
specified by the value st. EMACS returns that cursor value.

Note: The sticky flag currently has no effect.

mark Command and Function

The mark command or function either sets the mark or pops a mark.

Command Format: [{ESC}n] {ESC} X mark
or
[{ESC}n] {CTRL-@}

Function Format: (mark [n])

A - 1 0 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Argument: The argument n, if specified, must be an integer value.
Action: If the argument n is not specified, EMACS sets the mark to
the current cursor position.

If the argument n is specified, EMACS performs the pop mark
function. This function pops the last mark saved with the push
mark function, and moves the cursor to that position.

The mark function returns the value NIL.

markjoottom Command and Function

The markjoottom command or function places a mark at the bottom of
the buffer, leaving the cursor unchanged.

Command Format: {ESC} X markjoottom
or
{CTRL-X} {CTRL-Z} >

Function Format: (markjoottom)

Argument: A numeric argument, if specified, is ignored.
Action: EMACS places a mark at the bottom of the current text
buffer, leaving the current cursor unchanged.
The mark bottom function returns the value NIL.

markjendjof jword Command and Function
The markjend_of_word command or function places a mark at the end
of the word, leaving the cursor unchanged.

Command Format: {ESC} X markjendjof jword
or
{ESC} @

Function Format: (mark_end_of jword)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS places a mark at the end of the word, leaving the
current cursor unchanged.

The mark end of word function returns the value NIL.

S e c o n d E d i t i o n A - 1 1 0

EMACS FUNCTIONS AND COMMANDS

markjpara Command and Function

The markjpara command or function puts a mark at the end of a
paragraph and moves the cursor to the beginning of the paragraph.

Command Format: [{ESC}n] markjpara
o r
[{ESC}n] {ESC} H

Function Format: (markjpara [n])

Argument: The argument n, if specified, must be an integer value.

Action: If n is not specified, let n equal 1.

EMACS puts a mark at the end of the nth paragraph following the
current cursor position, and then moves the cursor back to the
beginning of the current paragraph.

The markjpara function returns the value NIL.

mark_top Command and Function

The markj^p command or function places a mark at the top of the
buffer, leaving the cursor unchanged.
Command Format: {ESC} X mark_top

or
{CTRL-X} {CTRL-Z} <

Function Format: (mark_top)

Argument: A numeric argument, if specified, is ignored.
Action: EMACS places a mark at the top of the current text buffer,
leaving the current cursor unchanged.
The markjx>p function returns the value NIL.

markjwhole Command and Function
The markjwhole command or function places a mark at the end of the
buffer and moves the current cursor to the beginning of the buffer.

Command Format: {ESC} X markjwhole
or
{CTRL-X} H

Function Format: (markjwhole)

Argument: A numeric argument, if specified, is ignored.

A - l l l S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Action: EMACS places a mark at the end of the current text buffer,
and moves the current cursor to the beginning of the text buffer.

The markjwhole function returns the value NIL.

member Function

The member function tests whether a specified item is in a list.

Format: (member i 1st)

Arguments: The argument i may have any data type. The argument
1st must "be a list.

Action: The member function returns a Boolean value. The value
returned is true if the item i appears in the list 1st; otherwise,
the value is false.

Note: The test for whether the item i appears in the list 1st is
made using the = function, not the eq function.

mergeJLines Command and Function

The inergej.ines command or function merges two lines together.

Command Format: [{ESC}n] {ESC} X merge_lines
or
[{ESC}n] {ESC} A

Function Format: (merge_lines [n])

Argument: The argument n, if specified, must be an integer value.

Action: If the argument n is not specified, let n equal 1.

If the value of n is positive, EMACS repeats the following step n
times: merge the current line with the next line in the current
text buffer by replacing the newline characters separating them
with a space.

If the value of n is negative, EMACS repeats the following step
(-n) times: merge the preceding line of the current text buffer
with the current l ine by replacing the newline characters
separating them with a space.

The merge_lines function returns the value NIL.

minibuf _response Function

The minibuf_response function is an alternate name for the prompt
func t i on .

S e c o n d E d i t i o n A - l l 2

EMACS FUNCTIONS AND COMMANDS

minibuffer_print Special Form

The ininibufferjprint special form is an alternate name for the
infojnessage function.

minibuffer_response Function
The minibuffer_response function is an alternate name for the
prompt function.

modjonejwindow Command and Function
The modjonejwindow command or function transforms the current
multiwindow display into a one-window display, saving information
about the other window.

Command Format: {ESC} X modjonejwindow
or
{CTRL-X} 1

Function Format: (modjonejwindow)

Argument: A numeric argument, if specified, is ignored.
Action: EMACS expands the current window on your display to the
full screen, saving information about the other windows so that
they can be restored by a future mod_splitjwindow command.
The mod one window function returns the value NIL.

mod_splitjwindow Command and Function
The mod_splitjwindow command or function restores you screen to the
two-window display in effect prior to the last modjonejwindow
command or function.

Command Format: {ESC} X mod_split_window
or
{CTRL-X} 2

Function Format: (modjsplitjwindow)

Argument: A numeric argument, if specified, is ignored.
Action: EMACS retrieves the information saved by the last
modjonejwindow command, and restores your screen to a two-window
display.
If no previous nKodjcnejwindow command has been executed, EMACS
creates a two-window display using, as a default, a buffer name of
ALTERNATE for the second window.

A - 1 1 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

If there were more than two windows on the screen at the time of
the last modjonejwindow display, EMACS chooses one of the windows
that was removed and uses it as a second window. It is
unpredictable which window is chosen.

The mod_split_window function returns the value NIL.

mod_write_file Command and File

The modjwriteJEile command and file writes the current buffer to a
specified output file, prompting you in case the file already
exists.

Command Format: {ESC} X mod_write_jEile
or
{CTRL-X} {CTRL-W}

Function Format: (mod_write_file [s])

Arguments: A numeric argument, if specified, is ignored.

The argument s, if specified to the mod_write_file function, must
be a string value.

Action: If the string s is not specified, EMACS prompts you for a
filename, and assigns the string you typed to the variable s.

If the variable s is a null string (no characters), let s equal the
name of the file currently associated with the current buffer.

If the file with pathname s already exists as a PRIMOS file, EMACS
prompts you, asking whether you wish to replace the existing disk
file. If you respond "n", the command is aborted.

EMACS saves the current text buffer to the output file specified by
the pathname s.

The mod write file function returns the value NIL.

modulo Function

The modulo function computes the remainder obtained when one
integer is divided by another.

Format: (modulo n d)

Arguments: The arguments n and d must be integer values.

S e c o n d E d i t i o n A - 1 1 4

EMACS FUNCTIONS AND COMMANDS

Action: The modulo function returns an integer value, computed as
fo l lows:

• If the value of d is 0, let r equal n.

• If the value of d is nonzero, let r equal the remainder
obtained when the numerator n is divided by the denominator
d. If the remainder is nonzero, the sign of r always equals
the sign of d.

The modulo function returns the value r.

more_argsj? Function

The more_argsjo function tests to see if more string arguments are
pending.

Format: (more_argsjp)

Arguments: None.

Action: Whenever you invoke a command, you can specify the string
arguments for that command. These arguments are assigned, in turn,
to each &args directives and to prompt directives, as well.

more_args_p indicates whether there are any unclaimed arguments
from the invocation, and can be used to determine if a prompt will
really occur.

movejoottom Command and Function

The movejoottom command or function moves the current cursor to the
bottom of the buffer.

Command Format: {ESC} X movejoottom
or
{ESC} >

Function Format: (movejoottom)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS moves the current cursor to the bottom of the
b u f f e r.

The movejxjttom function returns the value NIL.

A - 1 1 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

movejDop Command and Function

The movejop command or function moves the current cursor to the
top of the buffer.

Command Format: {ESC} X moveJx>p
or
{ESC} <

Function Format: (move_top)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS moves the current cursor to the top of the buffer.

The movejtop function returns the value NIL.

multiplier Command

The multiplier command can be used immediately after a numeric
argument specification to multiply the numeric argument by 4. The
command can only be used when bound to a key. It is normally bound
as {CTRL-U}.

Example: The command

{ESC} 22 {CTRL-U} x

inserts 88 x's into your buffer.

next Jouf Command and Function

The next Jouf coinmand or function cycles to your next external
b u f f e r .

Command Format: {ESC} X nextjxif
or
{ESC} N

Function Format: (nextjouf)

Argument: A numeric argument, if specified, is ignored.

Action: This command is used to cycle through all your external
(user-defined) buffers. The order of searching is as defined in
the internal .buffers buffer.

EMACS searches for your current buffer in the .buffers buffer,
finds the next buffer, and then changes your current buffer to the
next buffer.

The nextjouf function returns the value NIL.

S e c o n d E d i t i o n A - 1 1 6

EMACS FUNCTIONS AND COMMANDS

nextjouff Command and Function

The nextjouff command or function is an alternate name for the
nextjouf coinmand and function.

next JL ine Function

The nextj.ine function moves the cursor to the next line.

Format: (next_line [n])

Arguments: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: The nextJLine function returns a Boolean value.

If n is not specified, let n equal 1.

If the value of n is 0, no cursor movement takes place and the
value true is returned.

If the value of n is positive, EMACS moves the cursor down n lines
and then to the beginning of the line. If the end of buffer is
reached, cursor movement stops and the value false is returned;
otherwise, the value true is returned.

If the value of n is negative, EMACS moves the cursor up n lines,
and then to the beginning of the line. If the top of buFfer is
reached, cursor movement stops and the value false is returned;
otherwise, the value true is returned.

nextj.inejcc>mmand Command and Function

The nextjlinejcommand command or function moves the cursor to the
next line.

Command Format: [{ESC}n] {ESC} X nextJ.ine_command
or
[{ESC}n] {CTRL-N}

Function Format: (next^Linejoommand [n])

Arguments: If the argument n is specified, it must be an integer
value, which may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If n equals 0, no action takes place.

If the value of n is positive, EMACS moves the cursor vertically
down n lines, stopping if the bottom of the buffer is reached.

A - 1 1 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

If the value of n is negative, EMACS moves the cursor vertically up
n lines, stopping if the top of the buffer is reached.

nextjpage Command and Function

The nextjpage command or function moves the window forward a group
of lines, usually 18.

Command Format: [{ESC}n] {ESC} X nextjjage
or
[{ESC}n] {CTRL-V}

Function Format: (nextjpage [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place. If the value of n
is positive, the window moves forward n pages, stopping if the encT
of buffer is reached. The cursor is left at approximately the
middle of the window.

If the value of n is negative, the window moves back n pages,
stopping if the beginning of the buffer is reached. The cursor is
left at approximately the middle of the window.

The nextjpage function returns the value NIL.

not Function

The not function returns the logical negation of its argument.

Format: (not b)

Argument: The argument b must be a logical value.
Action: The not function returns a logical value. If the value of
the argument b is true, then not returns the value false;
otherwise, not returns the value true.

nth Function

The nth function returns the nth character in a string.

Format: (nth s n)

Arguments: The argument s must be a string or character value.
The argument n must be an integer value.

S e c o n d E d i t i o n A - 1 1 8

~ \

EMACS FUNCTIONS AND COMMANDS

Action: The nth function returns a character value, computed as
fo l lows:

• Let k equal the number of characters in the string s.

• If K=n<=k, EMACS returns the character from position n of
string s.

• Otherwise, EMACS returns a null string.

nthcar Function

The nthcar function returns the nth car of a list.

Format: (nthcar 1st n)

Arguments: The argument 1st must be a list value. The argument n
must be an integer value.

Action: The nthcar function returns a value whose data type
depends upon the arguments.

The value returned is the nth car of the list 1st. This is the
item of the list 1st in position n.

If the list's length is shorter than n, the function returns the
value NIL.

null Function

The null function tests whether its argument is a null list.

Format: (null v)

Argument: The argument y may have any data type.

Action: The null function returns a Boolean value. The value is
true if y is a null list; otherwise, the value is false.

Notes: The null list, (), is often represented in this book as
NIL. Either representation works in a PEEL program, as long as you
never setq NIL.

You can use the null function in a loop through the elements of a
list, applying it to the cdr of the list to test if there are any
items remaining.

A - 1 1 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

This function is equivalent to either

(= v NIL)

or

(eq v NIL)

numberp Function

The numberp function tests whether its argument is a number.

Format: (numberp v)

Argument: The argument v may have any data type.

Action: The number p function returns a Boolean value. The value: p rur
if vreturned is true iF y has an integer data type; otherwise, the

value is false.

numeric_argument Function

The numeric_argument function returns the numeric argument to a
defcom command.

Format: (numeric_argument [n])

Argument: The argument n, if specified, must be an integer value.

Action: The numeric_argument function may return either a numeric
argument or NIL.

The numeric_argument function is normally used in the PEEL source
for a defcom command. When the defined command is invoked, if
there is a numeric argument to the invocation of the command, the
numeric_argument function returns the value of that numeric
argument. If the command is invoked with no numeric argument, then
the argument n serves as a default value:

• If an argument n has been specified, the numeric_argument
function returns the value of n.

• If there is no argument n, the numeric_argument function
returns the value NIL.

If the numeric_argument function is used other than in the PEEL
source for a defcom, it returns the value NIL.

S e c o n d E d i t i o n A - 1 2 0

EMACS FUNCTIONS AND COMMANDS

Example: The standard defcom produced by expandjnacro uses
rumeric_argument, with a default of 1, to control the number of
times the defined command is executed.

(defcom simplejexample
(dojijtimes (numeric_argument 1)
(print "EMACS is extensible.")

))

Note: The numeric_argument function is similar to the defcom
option s_ia. For instance, Stna (&pass foo sdefault 2) is equivalent
to (setq foo (numeric_argument 2)).

onejwindow Command and Function

The onejwindow command or function transforms the current
multiwindow display into a one window display.

Command Format: {ESC} X onejwindow

Function Format: (onejwindow)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS expands the current window on your display to the
full screen.

The onejwindow function returns the value NIL.

Note: You may use the modjonejwindow command to save information
about the window being removed, so that it can be restored by a
future inodjsplitjwindow command.

openJ.ine Command and Function

The openJLine command or function inserts a carriage return at the
current cursor position without moving the cursor.

Command Format: [{ESC}n] {ESC} X openJLine
or
[{ESC}n] {CTRL-O}

Function Format: (openJLine [n]

Argument: The argument n, if specified, must be an integer value.

Action: If n is not specified, let n equal 1.

If n is positive, EMACS repeats the following step n times: insert
a carriage return into the buffer at the current cursor position,
and then move the cursor back over the character just inserted.

A - 1 2 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Therefore, this command is equivalent to the cr command followed by
the back char command.

The openJLine function returns the value NIL.

or Function

The or function is a Boolean operator that has the logical "or" as
its arguments.

Format: (or bl b2 [b3 ... b8])

Arguments: The or function takes at least two arguments and no
more than eight arguments. All arguments must have the Boolean
data type.

Action: The or function returns a Boolean value computed by taking
the logical "inclusive or" of all of its arguments. That is, the
or function returns the value false if the values of all its
arguments are false; otherwise, it returns the value true. All
arguments are evaluated regardless of whether any is true. Order
of evaluation is unspecified.

otherjwindow Command and Function

The other_window command or function switches the cursor between
the current window and the last previously used window.

Command Format: {ESC} X other_window
or
{CTRL-X} 0

Function Format: (otherjvindow)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS switches the cursor from the current window to the
last window on the screen that was previously used.

The other_window function returns the value NIL.

otherwise Keyword

The otherwise keyword specifies an action to be taken if none of
the criteria in a select or a dispatch have been met. It must be
the last item in these special forms.

S e c o n d E d i t i o n A - 1 2 2

EMACS FUNCTIONS AND COMMANDS

overlayjoff Command and Function

The overlay command or function turns off overlay mode.

Command Format: {ESC} X overlayjoff

Function Format: (overlayjoff)

Argument: A numeric argument, if specified, is ignored.
Action: EMACS turns off overlay mode, so that when you type
characters to be inserted into your text buffer, the new characters
do not overlay existing characters.

The overlayjoff function returns the value NIL.

overlayjon Command and Function
The overlayjon command or function turns on overlay mode.

Command Format: {ESC} X overlayjon

Function Format: (overlayjon)

Argument: A numeric argument, if specified, is ignored.
Action: EMACS turns on overlay mode. In this mode, any character
that you type at the keyboard overlays the existing character on
your screen, rather than being inserted between existing
characters.

The overlayjon function returns the value NIL.

overlay_rubout Command and Function
The overlay_rubout command or function deletes a character in
overlay mode.
Command Format: [{ESC}n] {ESC} X overlay_rubout

Function Format: (overlay_rubout [n])

Argument: The argument n, if specified, must be an integer value.
Action: If the value of n is not specified, let n equal 1.

EMACS deletes the character to the left of the current cursor and
inserts a space to replace it. The cursor is left at the space
that was inserted.

The overlay_rubout function returns the value NIL.

A - 1 2 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

overlayer Command and Function

The overlayer command or function performs the actual overlaying in
overlay mode.

Command Format: {ESC} X overlayer

Function Format: (overlayer [c] [n])

Arguments: The argument c, if specified, must be a character
value. The argument n, if specified, must be an integer value.

Action: The last character of a key sequence bound to the
overlayer command (or, in the case of the overlayer function, the
character c), replaces the current character on the screen.

Example: See the self_insert function.

pending_reenter Function

The pending_reenter function is the same as the suppress_redisplay
func t ion .

pi Command and Function

The pi coinmand or function compiles and executes the contents of
the current buffer.

Command Format: {ESC} X pi

Function Format: (pi)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS compiles and executes the contents of the current
text buffer.

The pi function returns the value NIL.

Note: The buffer cannot exceed 32767 characters.

pljninibuffer Command

The pljninibuf fer command lets you type an expression into the
minibuffer that EMACS executes as a PEEL statement.

Format: {ESC} X pljninibuf fer
or
{ESC} {ESC}

Argument: A numeric argument, if specified, is ignored.

S e c o n d E d i t i o n A - 1 2 4

-■>%

EMACS FUNCTIONS AND COMMANDS

Action: EMACS prompts you in the minibuffer for a line containing
a PEEL statement. EMACS then executes the statement that you type.

pointjcursor jtojstring Function

The point_cursorJ:o_string function returns the text between the
argument cursor and the current cursor.

Format: (pointjcursor_tojstr ing cur)

Argument: The argument cur must be a cursor value in the same:gum<IFFebuffer as the current cursor.

Action: The pointjcursorJtojstring function returns a string value
consisting of all the text in the current buffer between the
current cursor position and the argument cur.

popmark Command and Function

The popmark command or function pops a mark off the top of the mark
stack.

Command Format: {ESC} X popmark

Function Format: (popmark)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS pops the mark off the top of the mark stack and sets
the mark to that position.

The popmark function returns the value NIL.

Note: Use the pushmark command or function to store a mark on the
mark stack.

prepend_tojouf Command and Function

The prepend_to_buf command or function prepends the current region
to a buffer. The word "prepend" means that the insertion is made
at the beginning of the buffer.

Command Format: [{ESC}n] {ESC} X prepend_tojouf
o r
[{ESC}n] {CTRL-X} P

Function Format: (prepend_to_buf [n [s]])

Argument: The numeric argument n, if specified, must be an integer
value.

A - 1 2 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

The argument s, if specified, must be a string value.

Action: If the argument s is unspecified, EMACS prompts you for a
buffer name and assigns the resulting string to the variable s.

EMACS prepends the current region to the buffer whose name is
specified by the string s. This means that the text in the current
region is inserted at the beginning of that buffer.

If n is not specified, the text in the current region is deleted,
meaning that the prepend operation is, in effect, a move. If n is
specified, the text is copied and the marked region is not deleted.

prependJo_file Command and Function

The prepend_to_file command or function prepends the current region
to a file. The word "prepend" means that the text is inserted at
the beginning of the file.

Qommand Format: [{ESC}n] {ESC} S prependJto_file
or
[{ESC}n] {CTRL-X} {CTRL-Z} P

Function Format: (prepend_to__Eile [n [s]])

Argument: The argument n, if specified, must be an integer value.

Action: If the string s is not specified, EMACS prompts you for a
filename. The resulting string is assigned to the variable s.

EMACS prepends the current region to that file. This means that
the text in the current marked region is inserted at the beginning
of that file.

If n is not specified, the text in the current region is deleted,
meaning that the prepend operation is, in effect, a move. If n is
specified, the text is copied and the marked region is not deleted.

prevjouf Command and Function

The prevjouf command or function cycles you to the previous
external buffer.

Command Format: {ESC} X prevjouf
or
{ESC} P

Function Format: (prevjouf)

Argument: A numeric argument, if specified, is ignored.

S e c o n d E d i t i o n A - 1 2 6

EMACS FUNCTIONS AND COMMANDS

Action: This command is used to cycle through all your external
(user-defined) buffers. The order of searching is in reverse order
from the order defined in the internal .buffers buffer.

EMACS searches for your current buffer in the .buffers buffer,
finds the preceding buffer in the .buffers buffer, and then changes
the current buffer to that buffer.

The prevjouf function returns the value NIL.

prevj-ine Function

The prev J. ine function moves the cursor to the previous line.

Format: (prev_line [n])

Argument: The argument n, if specified, must be an integer whose
value that may be positive, 0, or negative.

Action: The prevj.ine function returns a Boolean value,

If n is not specified, let n equal 1.

If the value of n is 0, no cursor movement takes place and the
value true is returned.

If the value of n is positive, EMACS moves the cursor up n lines,
and then to the beginning of the line. If the top of the buffer is
reached, cursor movement stops and the value false is returned;
otherwise, the value true is returned.

If the value of n is negative, EMACS moves the cursor down (-n)
lines, and then to the beginning of the line. If the end of the
buffer is reached, cursor movement stops and the value false is
returned; otherwise, the value true is returned.

prev J. ine jcommand Command and Function

The prevJ.ine_oommand command or function moves the cursor to the
previous line.

Command Format: [{ESC}n] {ESC} X prevJ.ine_command
or
[{ESC}n] {CTRL-Z}

Function Format: (prev__linejcommand [n])

Argument: If the argument n is specified, it must be an integer
whose value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

A - 1 2 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

If n equals 0, no action takes place.

If the value of n is positive, EMACS moves the cursor vertically up
n lines, stopping if the beginning of the buffer is reached.

If the value of n is negative, EMACS moves the cursor vertically
down (-n) lines, stopping if the end of the buffer is reached.

Note: EMACS maintains the horizontal character position as well as
possible.

priinosjcommand Command and Function

The primosjcommand command or function executes a PRIMOS command
without leaving EMACS.

Command Format: {ESC} X prinos jcommand
or
{CTRL-X} {CTRL-E}

Function Format: (primosjcommand [s])

Arguments: A numeric argument, if specified, is ignored.

The argument s, if specified, must be a string value.

Action: If the argument s is not specified, EMACS prompts you with
"primos command:". The string that you type in response is
assigned to the variable s.

EMACS proceeds as follows:

• If the first character in the string s is not !, EMACS
executes

(primosjexternal s)

• If the first character of the string s is 1, but the second
character of the string is not !, EMACS executes

(primos_internal_como s2)

where s2 is a string equal to s, but with the leading I
removed.

• If the first two characters of the string s are !!, EMACS
runs

(primos_internal_screen s2)

where s2 is a string equal to s, but with the first two
characEers removed.

S e c o n d E d i t i o n A - 1 2 8

EMACS FUNCTIONS AND COMMANDS

The primos jcommand function returns the value NIL.

Note: At Revision 19.4 of PRIMOS, any PRIMOS command except
"EMACS" may be execu ted v i a p r imos_ in te rna l j como o r
primos_internal_screen. External commands no longer overwrite
EMACS.

primosjexternal Command and Function

The primosjexternal command or function executes a PRIMOS command
by means of a separate phantom job.

Command Format: {ESC} X primosjexternal

Function Format: (primosjexternal [s])

Arguments: A numeric argument, if specified, is ignored.

The argument s, if specified, must be a string value.

Action: If the argument s is not specified, EMACS prompts you with
"external command:". The characters that you type in response are
assigned to the string variable s.

EMACS runs a separate phantom job to execute the PRIMOS command
specified by the string s. It waits for the command to complete
and then displays the results in the filejoutput buffer.

After the phantom job has terminated, EMACS creates or overwrites
the text buffer named filejoutput, loading into it the text of the
listing file created by the phantom job. You may continue editing
your original file by switching back to the buffer into which that
file was loaded.

The primosjexternal function returns the value NIL.

primos_internal_como Command and Function

The primos_internal_como command or function runs a PRIMOS command
with como output.

Command Format: {ESC} X primos_internal_como

Function Format: (primos_internal_como [s])

Arguments: A numeric argument, if specified, is ignored.

The argument s, if specified, must be a string value.

Action: If the argument s is not specified, EMACS prompts you with
"internal command:". The characters that you type in response are
assigned to the string s.

A - 1 2 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

The characters of the string s must form a PRIMOS command not
requiring any interactive keyboarcT input from the user. EMACS runs
the command using CP$.

After execution of the command is completed, EMACS creates or
overwrites the text buffer named filejoutput, loading into it the
text or the command output.

primos_internalj_uiet Command and Function

The primos_internalj_uiet command or function executes a PRIMOS
command, overwriting your screen with any terminal output.

Command Format: {ESC} X primos_internal_quiet

Function Format: (primos_internal_quiet [s])

Arguments: A numeric argument, if specified, is ignored.

The argument s, if specified, must be a string value.

Action: If the argument s is not specified, EMACS prompts you with
"quiet command:". The characters you type in response are assigned
to the string s.

The characters of the string s may contain any PRIMOS command
except "EMACS". EMACS runs the command using CP$.

After execution of the command is completed, EMACS overwrites your
screen display with the terminal output from the command. You may
clear your screen by using {CTRL-L}.

The primosJLnternaljguiet function returns the value NIL.

Note: This command is useful for executing PRIMOS commands that
normally do not produce any terminal output, such as ATTACH.

primos_internalj5creen Gommand and Function

The primos_internal_screen command or function executes a PRIMOS
command.

Command Format: {ESC} X primos_internal_screen

Function Format: (primos_internaljscreen [s])

Arguments: A numeric argument, if specified, is ignored.

The argument s, if specified to the primos_internal_screen
function, must~be a string value.

S e c o n d E d i t i o n A - 1 3 0

EMACS FUNCTIONS AND COMMANDS

Action: If the argument s is not specified to the
primos_internal_screen function, or if the primos_internal_screen
command is used, EMACS prompts you with "internal command:". The
characters that you type in response are assigned to the string
variable s.

The characters of the string s may be any PRIMOS command except
"EMACS". EMACS executes the command using CP$.

After execution of the command is completed, EMACS clears your
display screen and displays the terminal output from the command on
your screen. You may restore your screen by typing {CTRL-G}.
The primos_internal_screen function returns the value NIL.

Note: This is used for interactive commands. The terminal is
reset, the aommand is executed, and when command execution is
completed, typing any character restores your EMACS screen.

primos_recycle Command
The primos_recycle command runs the PRIMOS rescheduler. It should
not normally be used by PEEL programmers.

primos_smsgl Function

The primosjsmsgl function sends a PRIMOS message to a specified
user.

Format: (primos_smsgl a s)

Arguments: The argument a must be either a string value or an
integer value. The argument s must be a string value.

Action: EMACS transmits a PRIMOS message to a specified user. The
argument a specifies the addressee either as a string value
representing the name or as an integer value representing the
process number. (None of the usual PRIMOS MESSAGE command options,
such as -CN or -NOW, are supported.)

The argument s is the message to be sent.

If the message was successfully sent, primosjsmsgl function returns
the value NIL.

prinl Function

The prinl function prints a value or inserts a value into your
text. The prinl function is similar to the print function, except
that no new line is displayed or inserted.

A - 1 3 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Format: (prinl v [cur])

Arguments: The argument v may have any data type.

The argument cur, if specified, must be a cursor value.

Action: The prinl function returns a value whose data type equals
the data type of the argument v.

If the argument cur is specified, EMACS sets the current cursor to
cur, and then inserts a printed representation of the value of the
argument v into your text buffer at that cursor position.

If the argument cur is not specified, EMACS displays the value of
the argument y on your screen. To restore your screen, type
{CTRL-G}.

The prinl function returns the value of y.

Note: The printed line is not terminated. Thus, the results of
consecutive prinl invocations will be concatentated on the same
l ine .

print Function

The print function displays or inserts a specified value followed
by a newline.

Format: (print v [cur])

Arguments: The argument v may have any data type.

The argument cur, if specified, must be a cursor value.

Action: The print function returns a value whose data type equals
the data type of the argument y.

If the argument cur is specified, EMACS changes the current cursor
to cur, and then inserts a printed representation the value of the
argument y, followed by a newline character, into your text buffer
at that position.

If the argument cur is not specified, EMACS displays the value of
the argument y, followed by a newline character, on your screen.
To restore your screen, type {CTRL-G}.

The format of the value displayed depends upon the data type of the
variable y. If y is an atom, the name of the atom is printed; if
y is an integer, a number is printed; if y is a string, the string
is printed in quotation marks, with appropriate escape sequences;
if y is a character, the character (preceded by a backslash) is
printed. For all other data types, a bracketed descriptor
describing the item is displayed.

S e c o n d E d i t i o n A - 1 3 2

EMACS FUNCTIONS AND COMMANDS

The print function returns the value of the argument y.

Note: The difference between the print and localjdisplayjgenerator
functions is that the latter does not display string arguments
enclosed in quotation marks.

progn Special Form
The progn function evaluates one or more expressions and returns
the value of the last expression.

Format: (progn sl [s2 ...])

Arguments: The arguments sl, s2, and ..., when specified, may be
any PEEL expressions.
Action: EMACS evaluates each of the arguments sl, s2, and ... in
turn, and returns the value of the last one.

prompt Function
The prompt function prompts the user for a string value.

Format: (prompt s)

Argument: The argument s must be a string value.
Action: The prompt function returns a string value.

EMACS displays the string s, followed by a colon symbol (:), in the
minibuffer, and awaits a typed response. The characters typed in
response form the string value that is returned by the prompt
function.

Note: This function will return the next pending argument, in
place of a prompt, if there are more arguments pending. (See the
more_argsjp function.)

prompt_for_integer Function
The prompt_for_integer function prompts the user for an integer
value.
Format: (prompt_for_integer s n)

Arguments: The argument s must be a string value. The argument n
must be an integer value.

Action: The prompt_jEor_integer function returns an integer value.

A - 1 3 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

EMACS displays the contents of the string s, followed by a colon
(:), in the minibuffer, and awaits a typed response. The typed
response must be an optional string of characters followed by a
newline. The characters must form a legal decimal number,
optionally signed.

If no characters are typed prior to the newline, then the
prompt_jfor_integer function returns the value n; otherwise, the
prompt_for_integer function returns the value of the integer typed.

Note: This function will return the next pending argument, in
place of a prompt, if there are more arguments pending. (See the
more_argsj? function.)

prompt_for_string Function

The prompt__for_string function prompts the user for a string and
returns the value typed.

Format: (promptJEor jstring s t)

Arguments: The arguments s and t must be string values.

Action: The prompt_for_string function returns a string value.

EMACS displays the string s, followed by a colon symbol (:), in the
minibuffer, and awaits a typed user response. The typed response
is an optional string of characters ending with a newline.

If a string of characters is typed prior to the newline, then the
prompt_for js t r ing funct ion re turns a s t r ing conta in ing the
characters typed; otherwise, the prompt J:or jstring function
returns the value t.

Note: This function will return the next pending argument, in
place of a prompt, if there are more arguments pending. (See the
more_args_p function.)

pushmark Command and Function

The pushmark command or function pushes the mark onto the mark
stack and sets a new mark.

Command Format: {ESC} X pushmark

Function Format: (pushmark)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS pushes the position of the current mark onto the
mark stack, and sets a new mark at the current cursor position.

S e c o n d E d i t i o n A - 1 3 4

EMACS FUNCTIONS AND COMMANDS

Note: The stacked mark value may be restored by means of the
popmark command or function.

putprop Function

The putprop LISP function assigns a tag and a value to a property
list (plist). Plist is an association list.

Format: (putprop pi v t)

Arguments: The arguments r_l and t must be atoms, usually quoted.
The argument v may have any data type.

Action: The putprop function assigns the tag t and the value y to
the property list for the atom r_L.

The putprop function returns the value NIL.

Note: If an atom has a property list, the get function can be used
to determine the value corresponding to a desired tag in the
property list. The remprop function removes a tag and value from
the property list. EMACS has no way of accessing the entire
contents of an atom's plist.

Example: If the atom Jane is previously undefined, then the
statement

(putprop 'Jane 6 'age)

gives Jane a property list with the value

((age 6))

query_replace Command and Function
The query_replace command or function replaces occurrences of one
string with another, querying you prior to each replacement.
Command Format: {ESC} X query_replace

or
{ESC} %

Function Format: (query_replace [s [t]])

Arguments: A numeric argument, if specified, is ignored.
The arguments s and t, if specified to the query_replace function,
must be string values.

Action: If the argument s is not specified, EMACS prompts you with
"search for:". The characters you type prior to a newline are
assigned to the string s.

A - 1 3 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

If the character string t is not specified, EMACS prompts you with
"replace with:". The characters you type are assigned to the
string t.

EMACS searches the current marked region, starting from the top of
the region, for occurrences of the string s. When the search
fails, EMACS displays "not found" and terminates the query_replace
func t ion .

For each occurrence found, EMACS positions the cursor at the end of
the occurrence of the string s and prompts the user for a single
character, which may be any of the following:

• Space to replace the occurrence of s with the string t in
the text buffer

• Return for no replacement

• Period to replace the occurrence of s with t, and terminate
query_replace

• {CTRL-G} to terminate query_replace with no replacement

When the query_replace function terminates, EMACS moves the cursor
back to its original position prior to the execution of the
func t ion .

The query_replace function returns the value NIL.

quit Command and Function

The quit command returns you from EMACS to its invocation process,
usually PRIMOS.

Command Format: {ESC} X quit
or
{CTRL-X} {CTRL-C}

Function Format: (quit)

Argument: A numeric argument, if specified, is ignored.

Action: If there are modified buffers, EMACS overwrites your
screen with a list of modified buffers that have not been saved to
files, and asks you if you wish to quit executing anyway. If you
type "y", EMACS terminates immediately, returning to the process
that invoked it, usually PRIMOS. If you type "n", you simply
return to editing.

Note: The function quit simply sets a flag indicating EMACS should
exit, rather than actually having the exit occur at that time.

S e c o n d E d i t i o n A - 1 3 6

^ >

~ >

EMACS FUNCTIONS AND COMMANDS

quote Function

The quote function is a LISP function that returns its argument
without evaluating it.

Format: (quote x)
o r
' x

Argument: The argument x may have any data type.

Action: The quote function prevents the normal evaluation of the
argument x. It returns x, not the value of x.

quotejcommand Command

The quotejcommand command accepts the next character typed
literally for insertion into the text buffer.

Format: [{ESC}n] {ESC} X quotejcommand
or
[{ESC}n] {CTRL-Q}

Argument: The argument n, if specified, must be an integer value.

Action: If the argument n is not specified, let n equal 1.

EMACS inserts the typed character n times into the text buffer.
Nonprinting characters are usually displayed as a question mark
(?), or as a rectangular block.

range_to_string Function

The range_to_string function returns a character string containing
the text between two cursors.

Format: (range_to_string curl cur2)

Arguments: The arguments curl and cur2 must be cursor values.

Action: The range_to_string function returns a character string
value containing all the characters in your text buffer between
curl and cur2. The string cannot be longer than 32767 characters.

Note: It is not required that curl precede cur2.

A - 1 3 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

read Function

The read function reads and returns a PEEL form beginning at the
specified cursor position.

Format: (read cur)

Argument: The argument cur must be a cursor value.

Action: Beginning at the cursor position indicated by cur, EMACS
reads a PEEL form from your text buffer and returns it as a list
that can then be evaluated.

readjcharacter Function

The readjcharacter function reads a character from the terminal and
returns it.

Format: (readjcharacter [raw])

Argument: An argument, if specified, must be the atom raw.

Action: The readjcharacter function returns a character value.

EMACS reads a single character from the terminal. If raw is
specified, the character read is done as a raw read, that is, with
no help_on_tap processing.)

EMACS returns this character.

read__file Command and Function

The read_file command or function reads a file into your current
text buffer.

Command Format: {ESC} X read_file
or
{CTRL-X} {CTRL-R}

Function Format: (read_file [s])

Arguments: A numeric argument, if specified, is ignored.

The argument s, if specified, must be a character-string value.

Action: If the argument s is not specified, EMACS prompts you with
"read file:", and assigns the characters you type prior to a
newline to the string s.

S e c o n d E d i t i o n A - 1 3 8

EMACS FUNCTIONS AND COMMANDS

If the current buffer is not empty, EMACS prompts you with the
question, "buffer is not empty, delete it?". If you respond with
"n", EMACS aborts the command; if you respond "y", EMACS proceeds
as follows:

• It deletes the contents of the current buffer, if any.

• If the string s contains a valid pathname, EMACS opens the
file specified by that pathname and loads it into your
current buffer.

The readjEile function returns the value NIL.

Note: If s is a bad pathname, the previous contents of the buffer
will have been destroyed.

redisplay Function

The redisplay function forces EMACS to update the screen to reflect
the current state.

Format: (redisplay)

Arguments: None.

Action: EMACS updates the screen to reflect the current state.
The redisplay function returns the value NIL.

reexecute Command

The reexecute command reexecutes the command entered most recently
at the keyboard.

Format: [{ESC}n] {ESC} X reexecute
or
[{ESC}n] {CTRL-C}

Argument: The argument n, if specified, must be a numeric value.

Action: EMACS reexecutes the last command entered at the keyboard.
If the argument n is specified and greater than zero, EMACS
reexecutes the coinmand n times.

refresh Command and Function

The refresh command or function repaints the display screen.

Command Format: [{ESC}n] {ESC} X refresh
o r
[{ESC}n] {CTRL-L}

A - 1 3 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Function Format: (refresh [n])

Argument: The argument n, if specified, must be a numeric value.

Action: If the value of n is not specified, EMACS totally
refreshes the screen. That is, the screen is cleared and
repainted. Otherwise, EMACS repaints your screen so that the line
in the current cursor position is in the nth line in your window.

reject Command

The reject command is equivalent to executing an undefined command,
and i t prints "Inval id command:" in the minibuffer. I t is
typically used to rebind keys that are to be disabled.

remassoc Function

The remassoc function removes an item from a LISP-style association
l i s t .

Format: (remassoc k 1st)

Arguments: The argument 1st must be an association list. The
argument k may have any data type.

Action: The remassoc function returns the sublist of the list
obtained by removing the first sublist associated with the key k in
1s t .

Example: After the following:

(setq a '((foo bar) (go stop) (hi there) (foo bang)))
(remassoc 'foo a)

the value of a becomes

((go stop) (hi there) (foo bang))

Notice that only the first sublist with key foo is removed.

Notice also that there is no need to assign the result of remassoc
to a again with setq. The remassoc function automatically changes
the value of a as a side-effect.

remove Function

The remove function removes a member from a list.

Format: (remove i 1st)

S e c o n d E d i t i o n A - 1 4 0

EMACS FUNCTIONS AND COMMANDS

Arguments: The argument i may have any data type. The argument
1st must be a list value.

Action: The remove function returns a list value. The list value
returned is obtained by removing the item i from the list 1st.

Note: The test for whether the item i appears in the list 1st is
made with the = function rather than the eq function.

removejcharset Function

The removejcharset function removes all specified characters from a
s t r i n g .

Format: (removejcharset sl s2)

Arguments: The arguments sl and s2 must be string values.

Action: The removejcharset function returns a string value. The
string value returned is computed by removing from string sl any
and all characters that also appear in string s2.

remprop Function

The remprop LISP function removes a tag and associated value from a
property l ist .

Format: (remprop pi t)

Arguments: The arguments jol and t must be atoms, usually quoted.

Action: If the atom pi has a property list with a tag equal to the
tag t, EMACS removes tEe tag t and the corresponding value from
that property list.

The remprop function returns the value NIL.

Note: If an atom has a property list, the get function can be used
to determine a value corresponding to a desired tag in the property
l i s t .

repaint Command and Function

The repaint command or function moves the cursor to the specified
window line.

Command Format: [{ESC}n] {ESC} X repaint
o r
[{ESC}n] {CTRL-X} R

Function Format: (repaint [n])

A - 1 4 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Argument: The argument n, if specified, must be an integer value.

Action: If the argument n is not specified, let n equal 1.

EMACS moves the cursor to line n on your screen display.

The repaint function returns the value NIL.

replace Command and Function

The replace command or function replaces all instances of one
string with another in a current region.

Coinmand Format: {ESC} X replace

Function Format: (replace [sl [s2]])

Arguments: The arguments sl and s2, if specified, must be string
values.

Action: If the string sl is not specified, EMACS prompts the user
with "search for:". ffie characters typed prior to a newline are
assigned to the string sl.

If the argument s2 is not specified, EMACS prompts you with
"replace with:". The characters typed prior to a newline are
assigned to the string s2.

EMACS replaces all occurrences of the string sl in your current
reg ion w i th the charac te rs o f the s t r ing s2 . A f te r a l l
replacements have been made, EMACS returns the cursor to its
original position prior to the execution of replace.

The replace function returns the value NIL.

reset Command and Function

The reset command or function puts the screen back in one-window
mode, sets hcol to one, and refreshes the screen.

Command Format: {ESC} X reset

Function Format: (reset)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS resets several status values to their defaults. You
are returned to one-window mode, hcol (the leftmost column
displayed on the screen) is set to one, and the screen is
refreshed.

The reset function returns the value NIL.

S e c o n d E d i t i o n A - 1 4 2

EMACS FUNCTIONS AND COMMANDS

reset_tabs Command and Function

The reset_tabs command or function sets tabs at every five spaces
up to column 130.
Command Format: {ESC} X resetjtabs

Function Format: (resetJ~abs)

Argument: A numeric argument, if specified, is ignored.
Action: EMACS sets the tabs at every five spaces, in columns 5,
10, 15, and so forth, up to column 130.
The reset_tabs function returns the value NIL.

rest$ Function

The rest$ function is the same as the suffix$ function.

restjof J.ine Function
The restjof J.ine function returns a character string containing the
rest of the current line, excluding the newline character.

Format: (restjofJ.ine [cur])

Argument: The argument cur, if specified, must be a cursor value.
Action: The restjof J.ine function returns a string value.

If the argument cur is not specified, let cur equal the current
cursor position.

EMACS forms a string containing all the characters in the text from
cur to the end of the line containing cur, and returns that string
value.

restrictjx>_sui$ Function
The restrict_to_sui$ function is used in definitions of functions
that are restricted to SUI.

Format: (restrict Jo_sui $)

Arguments: None.

Action: If you are not using the SUI interface, EMACS displays the
error message "That command is not used in this interface." You
use this function in definitions of functions and (oommands that are
to be invoked only from the SUI interface.

A - 1 4 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

return Function

The return function terminates a PEEL function by returning to the
cal ler.

Format: (return [x])

Argument: The argument x, if specified, may have any data type.
Action: If the argument x is not specified, let x equal NIL.

EMACS terminates the current function and returns to the caller,
with the value x as the function value. The data type of x should
match that speciFied by the function's Screturns declaration, if
specified.

reverse_search Function
The reverse_search function searches back in the text buffer for a
specified string, and returns a Boolean value indicating success or
failure.

Format: (reverse_search s)

Argument: The argument s must be a string value.
Action: EMACS searches the text buffer back from the current
cursor position for the string s.

If the search is successful, EMACS moves the cursor to the first
character of the matching string in the text buffer, and returns
the value true.

If the search fails, the cursor is left unchanged, and the function
returns the value false.

reverse_searchjcommand Command and Function
The reversejsearchjcommand command or function searches back in the
text buffer for a string.

Command Format: {ESC} X reversejsearchjcommand
or
{CTRL-R}

Function Format: (reversejse arch jcommand [s])

Arguments: A numeric argument, if specified, is ignored.
The argument s, if specified, must be a string value.

S e c o n d E d i t i o n A - 1 4 4

EMACS FUNCTIONS AND COMMANDS

Action: If the argument s is unspecified, EMACS prompts you and
assigns the resulting string to the variable s.
EMACS searches the text buffer back from the current cursor
position for the string s. If the search succeeds, EMACS moves the
current cursor to the first character of the matching string in the
text buffer. The matched string cannot end beyond the current
cursor position.

If the search is unsuccessful, EMACS displays an error message.

ringj+iejoell Function
The ringjhejoell function sends a {CTRL-G} to your terminal.
Format: (ringjthejoell)

Arguments: None.
Action: EMACS sends a {CTRL-G} character to your terminal
producing a sound.
The ring_theJoell function returns the value NIL.

ruboutjchar Command and Function
The ruboutjchar command or function deletes the character to the
left of the current cursor.

Command Format: [{ESC}n] {ESC} X rubout_char
or
[{ESC}n] {CTRL-H}
or
[{ESC}n] {backspace}
or
[{ESC}n] {delete}

Function Format: (rubout_char [n])

Argument: The argument n, if specified, must be an integer value.
Action: If n is not specified, let n equal 1.
If the value of n is 0, no action takes place.

If the value of n is positive, EMACS deletes n characters,
beginning with the character preceding the current cursor positionand continuing backward, stopping if the beginning of the buffer is
reached.

A - 1 4 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

If the value of n is negative, EMACS deletes (-n) characters
beginning with the character at the current cursor position and
continuing forward, stopping if the end of the buffer is reached.

The rubout char function returns the value NIL.

ruboutjword Ganmand and Function

The ruboutjword command or function deletes one or more words
backwards in the current buffer.

Command Format: [{ESC}n] {ESC} X ruboutjword
o r
[{ESC}n] {ESC} {CTRL-H}
o r
[{ESC}n] {ESC} {backspace}
o r
[{ESC}n] {ESC} {delete}

Function Format: (ruboutjword [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If the argument n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, EMACS deletes n words beginning with
the word preceding the current cursor position and moving backward.
Deletion stops if the beginning of the buffer is reached.

If the value of n is negative, EMACS deletes (-n) words in the
text, beginning with the word at the current cursor position and
continuing forward. Deletion stops if the end of the buffer is
reached.

The rubout word function returns the value NIL.

samejouffer jo Function

The samejouffer j? function returns a Boolean value indicating if
two cursors point into the same text buffer.

Format: (sameJoufferj> curl cur2)

Arguments: The arguments curl and cur2 must be cursor values.

Action: The same Jouf fer_p function returns a Boolean value. If
curl and cur2 are cursor values within the same text buffer, the
Function returns the value true; otherwise, it returns false.

S e c o n d E d i t i o n A - 1 4 6

EMACS FUNCTIONS AND COMMANDS

save_all_files Command and Function

The save_all_files command or function saves all files that have
been modified.

Command Format: {ESC} X save_all_files

Function Format: (save_all_files)

Argument: A numeric argument, if specified, is ignored.
Action: EMACS saves the contents of every modified buffer into its
associated file. Unmodified buffers are ignored.

The save all files function returns the value NIL.

savejexcursion Special Form
The savejexcursion special form saves the current cursor position
and modes, executes all of its arguments, and restores the original
cursor and modes.

Format: (savejexcursion sl [s2 ...])

Arguments: The arguments sl, s2, and ..., if specified, must be
legal PEEL statements.
Action: EMACS saves the current cursor and all values and modes.
Then EMACS executes sl, s2, and so forth. When completed, EMACS
restores the saved cursor, values, and modes. The cursor is
repositioned to the center of the window.
The save excursion function returns the value NIL.

save_f ile Command and Function
The save_file command or function writes the current buffer to the
file associated with that buffer.

Command Format: {ESC} X save_file
or
{CTRL-X} {CTRL-S}
or
{CTRL-X} S

Function Format: (saveJEile)

Argument: A numeric argument, if specified, is ignored.
Action: EMACS writes the current text buffer out to a file, using
the filename associated with the buffer. If the file already
exists on disk, this operation overwrites it.

A - 1 4 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

savejposition Special Form

The savejposition special form is the same as the savejexcursion
special form, except that the current cursor is not repositioned.

savejtab Command and Function

The save tab command or function saves the current tab positions in
a file.

Command Format: {ESC} X savejtab

Function Format: (saveJuab)

Arguments: A numeric argument, if specified, is ignored.

Action: EMACS prompts you for a filename. Let the typed string be
assigned to the variable s. EMACS next prompts you for the name by
which the tabs are to be stored in the file. Let that typed string
be assigned to the variable t.

EMACS saves the current tab settings into the file specified by the
string s. They are stored in PEEL as a setq statement, which if
executecT, will assign the list of tab stops to a variable named by
the string t.

The savejtab function returns the value NIL.

Note: You may restore the saved tab settings by using the getjtab
command or function.

sayjnore Function

The sayjnore function is the same as the localjdisplayjgenerator
func t ion .

scanjerrors Function

The scanjerrors function scans the current buffer for errors in the
format of the specified language.

Format: (scanjerrors Ing)

Argument: The argument Ing must be an unquoted atom.

Action: The argument lncj must be one of the following atoms: C,
RPG, ETN, PMA, or TSI. (TSI refers to al l of Prime's
common-envelope compilers: PL/1, PL/1G, PASCAL, CBL, VRPG, and
SPL.) EMACS scans the current buffer for errors in the format
specified by the language atom Ing. This is used by COMPILE.

S e c o n d E d i t i o n A - 1 4 8

EMACS FUNCTIONS AND COMMANDS

scrolljotherjoackward Command and Function

The scrolljotherjoackward command or function scrolls backward that
window reached by the otherjwindow coinmand or function.

Command Format: [{ESC}n] {ESC} X scrolljotherjoackward
or
[{ESC}n] {CTRL-X} V

Function Format: (scrolljotherjoackward [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, EMACS scrolls the other window back
n lines.

If the value of n is negative, EMACS scrolls the other window
forward (-n) lines.

The scroll other backward function returns the value NIL.

scrolljotherJEorward Command and Function

The scroll_other_forward command or function scrolls forward that
window reached by the other jwindow command or function.

Command Format: [{ESC}n] {ESC} X scroll_other_forward
or
[{ESC}n] {ESC} {CTRL-V}

Function Format: (scrolljotherJEorward [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, EMACS scrolls the other window
forward n lines.

If the value of n is negative, EMACS scrolls the other window back
(-n) lines.

The scrolljotherjEorward function returns the value NIL.

A - 1 4 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

search Function

The search function returns the position of the first character of
a string that also appears in a second string.

Format: (search s t)

Arguments: The arguments s and t must be string or character
values.
Action: The search function returns an integer value.

If no characters in string t occur in string s, search returns the
value 0.

If any character in string t occurs in string s, search returns the
character position in s of the first character matching any
character in t.

Example: The function

(search "abcdef" "cb")
returns the value 2, while the function

(search "abcdef" "ce")
returns the value 3.

searchJoackjEi rst jcharse t J.ine Function
The searchJoack_.firstjcharsetJLine function is the same as the
searchJok_inJ.ine function.

searchJoackjEirst_notjcharsetJ.ine Function
The se archJoack_fi rst jiot_charsetJ.ine function is the same as the
verifyjDk_.inJ.ine function.

search Jok Function

The search Jok function searches back in your text buffer for any of
a specified set of characters.

Format: (searchJok s [n])

Arguments: The argument s must be a string value. The argument n,
if specified, must be an integer value.

S e c o n d E d i t i o n A - 1 5 0

EMACS FUNCTIONS AND COMMANDS

Action: The search Jok function returns a Boolean value.

If n is not specified, let n equal 1.

If n is positive, EMACS does the following n times: starting from
the current cursor position, it searches back in the text buffer
for any character from the set in string s. If no such character
is found, the search terminates, EMACS leaves the cursor at the
beginning of the buffer, and the function returns the value false.
If a character is found matching any in the set s, the cursor is
left on this character and the function returns true.

If the value of n is negative, EMACS performs

(search_fd (- n))

searchJok_inJ.ine Function
The search_bk_in_line function is like the searchjok function,
except that it only looks back as far as the beginning of the
current line.

search_charset_backward Function
The searchjcharsetjoackward function is the same as the searchJ>k
function.

search_charset_forward Function
The search_charset_forward function is the same as the searchJEd
function.

search_fd Function
The search_fd function searches forward in your text buffer for any
of a specified set of characters.

Format: (searchJEd s [n])

Arguments: The argument s must be a string value. The argument n,
if specified, must be an integer value.
Action: The search_fd function returns a Boolean value.

If n is not specified, let n equal 1.

If n is positive, EMACS does the following n times: starting from
the current cursor position, it searches forward in the text buffer
for any character from the set in the string s. If no such
character is found, the search terminates, EMACS leaves the cursor

A - 1 5 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

at the end of the buffer, and the function returns the value false.
If a character is found matching any in the set s, the cursor is
left on this character, and the function returns true.

If the value of n is negative, EMACS performs

(searchJ>k (- n))

search_.fd_inj.ine Function
The search_.fd_inj.ine function is the same as search_fd, except
that the search steps at the end of the current line.

search_for_first_charsetJ.ine Function
The search_for_first_charset_line function is the same as the
search_fd_in_line function.

search_f or _f i rst jnot jcharse t_line Functi on
The search_for_first_not_charset_line function is the same as the
verify_fd_in_line function.

search_not_charsetjoackward Function
The search_not_charset_backward function is the same as the
verifyjok function.

search_not_charset_forward Function
The search_notjcharset_forward function is the same as the
verify_fd function.

select Special Form

The select special form evaluates an expression and compares it
against a set of constants to determine what action to take.
Format: (select v

xl sl
x2 s2
• • •
otherwise sx)

Arguments: The argument y may have any data type.
Each argument xl, x2, and ... may consist of one or more constants
of the same data type as y.

S e c o n d E d i t i o n A - 1 5 2

EMACS FUNCTIONS AND COMMANDS

Each argument sl, s2, ..., and sx may consist of one or more PEEL
statements.

Action: EMACS evaluates the argument y and compares it to xl, x2,
and ... until a match is found. If a match is found, then tEe
corresponding PEEL statement sl, or s2, or ... is executed, and
the value of that statement is returned as the value of select.
Otherwise, the statement sx is executed, and the value of that
statement is returned as the value of select. (See Chapter 4 for
additional information and an example.)

If no match is found and no "otherwise" statement is specified,
select returns the value NIL.

select_any_window Command and Function

The select_any_window command or function selects any window and,
therefore, can be used to cycle through all windows.

Command Format: {ESC} X sel ect _any jwindow
or
{CTRL-X} 4

Function Format: (select_anyjwindow [n])

Argument: The argument n, if specified, must be a numeric value.

Action: EMACS repeats the following step n times: change the
current window to the next major window in its standard order of
windows.

Note: Use this command to cycle through, all your windows. The
majorjwindowjcount command can be used to get a count of the number
of windows.

selectjbuf Gommand and Function

The selectjouf command or function lets you change buffers.

Command Format: {ESC} X selectjouf
or
{CTRL-X} B

Function Format: (selectjouf [s])

Arguments: A numeric argument, if specified, is ignored. The
argument s, if specified, must be a string value.

Action: If the argument is not specified, EMACS prompts you with
"Buffer:". The characters that you type up to the first newline
are stored as a string in the variable s.

A - 1 5 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

If the string s is not a null string, EMACS switches you to the
buffer whose name is given by the characters of the string s.

If the string s is a null string, EMACS switches you back to the
buffer from which" you switched to the current buffer.

The selectjouf function returns the value NIL.

self_insert Function

The self_insert function inserts a character into your text buffer.
Format: (self_insert ch) (<*&~ 3*^ ~ *o A Vwms fe \<*s*<*2)

Argument: The argument ch must be a character.
Action: EMACS inserts the character ch into your text buffer at
the current cursor position. (See also the overlayer function.)

The self_insert function returns the value NIL.

Example:

(self_insert \G)
This function inserts the character "G" at the current cursor
position.

(overlayer \$)
This function overlays the current character with the character
"H".

send_raw_string Function
The send_raw_string function sends a string directly to the
terminal.

Format: (send_raw_string s)

Argument: The argument s must be a string value.

Action: The send_raw_string function returns a string value.

EMACS sends the string s to your terminal in raw mode and returns
the value of s. Use send_raw_string to send "escape sequences"
that directly manipulate features of the terminal, but remember
that by doing so you might confuse EMACS.

- ^ *

S e c o n d E d i t i o n A - 1 5 4

EMACS FUNCTIONS AND COMMANDS

set Function

The set function assigns the second argument to the first, and
returns the value assigned.

Format: (set a v)

Arguments: The argument a must be an atom, usually quoted with

The argument y may have any data type.

Action: EMACS assigns the value y to the atom a, and returns the
value y.

Note: The set function follows the standard PEEL convention that
both arguments are evaluated. That is why it is usually necessary
to quote the first of the two arguments. This is not always
necessary, however, as illustrated by the following example:

(set 'a *b)
(set a 23)

The first assignment statement gives the atom a the value b. In
the second assignment statement, the argument a is evaluated as
yielding the value b; thus the value of b is set to 23. The value
of a is unchanged, still equaling the atom b.

The setq function is related. In general, use of the set function
with a ' preceding the first argument is equivalent of use of setq
with no such '. For example, the first of the two set functions
shown above could be changed to:

(setq a 'b)

set_command_abort_flag Function
The set_command_abort_flag function sets the command_abort flag.

Format: (set_command_abort_flag)

Arguments: None.
Action: EMACS aborts the current command.

set_fill_column Command and Function
The set_fill_column command or function sets the fill column used
for fill mode.

Command Format: {ESC} X set_fill_column
Function Format: (set_filljcolumn [k])

A - 1 5 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Argument: The argument k, if specified, must be an integer value.

Action: If the argument k is not specified, EMACS prompts you for
an integer value, and assigns the result to k. EMACS sets the fill
column to k.

Note: The current fill column can be obtained by the following:

(buffer_info fi l l jcolumn)

setjiscroll Command and Function

The setjiscroll command or function sets the value of hcol, which
controls horizontal scrolling.

Command Format: {ESC} X setjiscroll

Function Format: (setjiscroll [k])

Arguments: A numeric argument, if specified, is ignored.

The argument k, if specified, must be a numeric value.

Action: If the argument k is not specified, EMACS prompts you with
"What is the horizontal column:", and assigns the result to the
variable k.

EMACS uses the value of k to set the value of hcol, which
determines the column number of the leftmost column displayed on
your screen.

set_key Command and Function.

The set_key command or function binds a keypath to a desired
function name.

Command Format: {ESC} X setjcey

Function Format: (set_key [p [f]])

Arguments: The arguments £ and f, if specified to the setjcey
function, must be string values.

Action: If the argument £ is not specified, EMACS prompts you with
"Key path:". The characters you type are assigned as a string
value to the variable p.

If the argument f is not specified, EMACS prompts you with "command
name:". The characters you type, prior to a newline, are assigned
as a string to the variable f.

S e c o n d E d i t i o n A - 1 5 6

EMACS FUNCTIONS AND COMMANDS

The string f must be the name of a previously-defined command.
EMACS binds the keypath specified by the characters in the string £
to the command specified by the string f. This binding applies
only to the current buffer.
The key_key function returns the value NIL.
Note: The set_key function is not normally as useful as
setjpermanent_key. The two functions differ only in that a set_key
binding applies to the current buffer, while a set_permanent_key
binding applies to all buffers throughout the remainder of your
session. Both functions are described in Chapter 2 of this manual.

set_leftjnargin Command and Function
The set_leftjnargin command or function sets the left margin.

Command Format: {ESC} X setJLeftjnargin

Function Format: (set_leftjnargin [k])

Arguments: A numeric argument, if specified, is ignored.
The argument k, if specified, must be a numeric value.

Action: If the argument k is not specified, EMACS prompts you for
an integer value with "what is the left margin:", and assigns the
result to the variable k.

EMACS uses the value of k as the left-margin value in fill mode.
Note: The left margin is used with the indent_to_fill_prefix and
filljpara commands when fill mode is on.

setjnode Command and Function
The setjnode command or function lets you specify the mode that
EMACS sets for your current buffer.

Command Format: {ESC} X setjnode

Function Format: (setjnode [m])

Arguments: A numeric argument, if specified, is ignored.
The argument m, if specified to the setjnode function, must be a
string value.
Action: If the argument m is not specified, EMACS prompts you with
"Mode name:". The characters you type prior to a newline are
assigned as a string to the variable m.

A - 1 5 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

EMACS sets the mode for your current buffer to the name specified
by string m. All other modes are turned off.

The setjnode function returns the value NIL.

set jnode_key Command and Function

The setjnode_key command or function lets you bind a keypath to a
command on a per-mode basis.

Command Format: {ESC} X set_mode_key

Function Format: (set_mode_key [m [p [f]]])

Arguments: A numeric argument, if specified, is ignored.

The arguments m, £, and f, if specified, must be string values.

Action: If the argument m is not specified, EMACS prompts you with
"Mode name:". The characters that you type are assigned as a
string to the variable m.

If the argument £ is not specified, EMACS prompts you with "Key
path:". The characters that you type prior to a newline are
assigned as a variable to the string £.

If the argument f is not specified, EMACS prompts you with "Coinmand
name:". The characters you type prior to a newline are assigned as
a string to the variable f.

The string £ must define a legal EMACS keypath. The string f must
name a previously defined EMACS command.

EMACS binds the command specified by f to the keypath specified by
p. The binding is in effect only for those buffers in which the
specified mode is turned on.

The set_mode_key function returns the value NIL.

setjpermanent_key Command and Function

The setjpermanentjcey command or function binds a keypath to a
desired function name.

Command Format: {ESC}X set_permanent_key

Function Format: (set_cermanent_key [p [f]])

Arguments: The arguments £ and f , i f speci f ied to the
set_permanent_key function, must be string values.

S e c o n d E d i t i o n A - 1 5 8

EMACS FUNCTIONS AND COMMANDS

Action: If the argument £ is not specified, EMACS prompts you with
"Key path:". The characters you type are assigned as a string
value to the variable £.

If the argument f is not specified, EMACS prompts you with "Command
name:". The characters you type, prior to a newline, are assigned
as a string to the variable f.

The string f must be the name of a previously defined command.
EMACS binds the keypath specified by the characters in the string p
to the command specified by string f. This binding affects all
buffers.

set_right_margin Command and Function

The set_right_margin command or function sets the right margin for
wrapping in fill mode.
Command Format: {ESC} X set_right_margin

or
{CTRL-X} F

Function Format: (set_right_margin [k])

Arguments: A numeric argument, if specified, is ignored.

The argument k, if specified, must be an integer value.

Action: If k is not specified, EMACS prompts you for an integer
value with "wEat is the right margin:", and assigns the value you
type to the variable k.

EMACS uses the value of k as the right margin for word wrapping in
fill mode.

set_tab Command and Function

The set_tab command or function is an alternate name for the settab
command and function.

set_tabs Command and Function

The set_tabs command or function is an alternate name for the
settab command and function.

setmark Command and Function

The setmark command or function sets the mark at the current cursor
position. It is the same as pushmark, except that it does not push
a mark if the mark has not changed.

A - 1 5 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

setq Function

The setq function is a standard LISP function that assigns the
second argument to the first after quoting the first.

Format: (setq a x)

Arguments: The argument a is an atom with any data type. The
argument x may be any PEEL expression with a matching data type.

Action: EMACS computes

(set 'a x)

and returns the value of that expression.

settab Command and Function

The settab command or function lets you set your tabs to any values
you wish.
Command Format: {ESC} X settab

Function Format: (settab)

Argument: A numeric argument, if specified, is ignored.
Action: EMACS displays a ruler on your screen and lets you set
tabs at whatever positions you want. (This command is described in
detail in the EMACS Reference Guide.)

settabsJErom_table Command and Function
The settabs_from_table command or function sets tab positions based
on the column position of words in the current line.

Command Format: {ESC} X settabs_from_table
or
{ESC} X setft

Function Format: (settabs_from_table)
or
(setft)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS sets the tab stop at the first column of every word
on the current line. For this command, a word is a sequence of
consecutive characters delimited by a space or a punctuation mark.

(This command is described in detail in the EMACS Reference Guide.)

S e c o n d E d i t i o n A - 1 6 0

EMACS FUNCTIONS AND COMMANDS

share_library$ Function
The share_library$ function loads a shared fasload format file at
EMACS initialization.

Format: (share_library$ s)

Argument: The argument s must be a string value.
Action: This function is for use only in INIT_EMACS when sharing
EMACS, and cannot be used for any other purpose.
EMACS opens for input a file whose name is obtained by adding the
suffix .EFASL to the string s. That file must have only defun and
defcom statements in it. EMACS then loads that file and defines
the functions and commands in it.

show_lib_alc$ Command
The show_lib_alc$ command displays the current shared EMACS library
segments when initializing EMACS.
Format: {ESC} X show_lib_alc$

Argument: A numeric argument, if specified, is ignored.
Action: This command is used only in INIT_EMACS when sharing
EMACS, and cannot be used for any other purpose. It prints at the
supervisor terminal the current shared EMACS library segments.

skipjoackjoverjwhite Function
The skipjoackjoverjwhite function skips back over whitespace
characters, returning a Boolean value indicating whether the
operation succeeded.
Format: (skipjoackingjoverjwhite [n])

Arguments: The argument n, if specified, must be an integer value.
Action: The skipjoackjoverjwhite function returns a Boolean value.

If the argument n is not specified, let n equal 1.
If n equals 0, no action is performed.

If n is equal to 1, EMACS proceeds as follows: if the cursor
currently points to a whitespace character (as indicated by the
atom whitespace), EMACS moves the cursor back to the first
preceding nonwhitespace character and returns the value true;
otherwise, EMACS returns the value false.

A - 1 6 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

If n is greater than 1, EMACS skips back over (n-1) groups of
whitespace characters, and then proceeds as described above for
n=l. This is done by alternating between skipjoackjoverjwhite and
skipjoack_to_white.

When n is less than 0, EMACS performs the following:

(skipjoverjwhite (- n))

Note: This is equivalent to (verifyJok whitespace).

skip_back_to_white Function

The skip_back_to_white function moves the cursor back to the
preceding whitespace character, returning a Boolean value
indicating whether the operation succeeded.

Format: (skipjoack_to_white [n])

Arguments: The argument n, if specified, must be an integer value.

Action: If n is not specified, let n equal 1.

If n equals 0, no action takes place.

If n equals 1, EMACS proceeds as follows: if the current cursor is
not on a whitespace character, EMACS moves the cursor back until
either the beginning of the buffer is reached or a whitespace
character is found. If the cursor is now on a whitespace
character, the function returns the value true; otherwise, it
returns the value false.

If n is greater than 1, EMACS first skips back over (n-1) groups of
whitespace characters, and then proceeds as described above for
n = l .

If n is less than 0, EMACS performs the following:

(skip_to_white (- n))

Note: This is equivalent to (searchJok whitespace).

skipjoverjwhite Command and Function

The skipjoverjwhite command or function moves the cursor forward
over whitespace characters, returning a Boolean value indicating
whether the operation succeeded.

Command Format: [{ESC}n] {ESC} X skip_to_white

Function Format: (skip_to_white [n])

S e c o n d E d i t i o n A - 1 6 2

EMACS FUNCTIONS AND COMMANDS

Arguments: The argument n, if specified, must be an integer value.

Action: The skipjoverjwhite function returns the value NIL.

If the argument n is not specified, let n equal 1.

If n equals 0, no action takes place.

If n equals 1, EMACS proceeds as follows: if the cursor currently
points to a whitespace character (as indicated by the atom
whitespace), then EMACS moves the cursor forward to the first
nonwhitespace character, and returns the value true; otherwise,
EMACS returns the value false.

If n is greater than 1, EMACS skips forward over (n-1) groups of
whitespace characters, and then proceeds as described above when n
equals 1.

If the value of n is less than 0, EMACS performs

(skipjoackjoverjwhite (- n))

skip_to_white Command and Function

The skip_to_white command or function moves the cursor forward to
the proceeding whitespace character returning a Boolean value
indicating whether the operation succeeded.

Command Format: [{ESC}n] {ESC} X skip_to_white

Function Format: (skip_to_white [n])

Arguments: The argument n, if specified, must be an integer value.

Action: If n is not specified, let n equal 1.

If n equals 0, no action takes place.

If n equals 1, EMACS proceeds as follows: if the current cursor is
not on a whitespace character, EMACS moves the cursor forward until
either the end of the buffer is reached or a whitespace character
is found. If the cursor is now on a whitespace character, then the
function returns the value true; otherwise, it returns the value
f a l s e .

If n is greater than 1, EMACS first skips forward over (n-1) groups
of whitespace characters, and then proceeds as described above for
n= l .

If n is less than 0, EMACS performs

(skip_back_to_white (- n))

A - 1 6 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

sleep_for_n_milliseoonds Function
The sleep_for_n_milliseconds function directs EMACS to pause for
the specified time interval.

Format: (sleep_for_n_milliseconds n)

Arguments: The argument n must be an integer value.
Action: The sleep_for_n_milliseconds function returns an integer
value.

EMACS sleeps for n milliseconds, and returns the value of n.

sortjdt Command and Function
The sortjdt command or function inserts the current date into your
text buffer in a format suitable for sorting.

Command Format: {ESC} X sortjdt

Function Format: (sortjdt)

Argument: A numeric argument, if specified, is ignored.
Action: EMACS inserts the current date into your text buffer at
the current cursor position. The format is as follows:

YY/MiVDD
This format is suitable for sorting.

The sortjdt function returns the value NIL.

sort_list Function

The sort_list function sorts a list and returns the result.

Format: (sort_list 1st)

Argument: The argument 1st must be a list of lists.

Action: The sort_list function returns a list value.

The list 1st is of the following form:

((keyl ...) (key2 ...) .. .)

EMACS forms a new list obtained by rearranging the items of this
list so that they are in increasing order by the keys.

S e c o n d E d i t i o n A - 1 6 4

EMACS FUNCTIONS AND COMMANDS

Each key is obtained by taking the car of each inner list. The
keys must be mutually comparable. In usual practice, they are
e i t h e r a l l i n t e g e r s , o r a l l c h a r a c t e r s , o r a l l s t r i n g s .
(Characters are, however, comparable with strings.)

The sortJList function returns the resulting list.

Example:

(setq names
'(("Fred" 37) ("Adam" 14) ("Joe" 34) ("Bert" 296)))

(setq numbers
'((37 "Fred") (14 "Adam") (34 "Joe") (296 "Bert")))

(print (sortJList names))
(print (sort_list numbers))

Executing these statements displays the following results:

(("Adam" 14) ("Bert" 296) ("Fred" 37) ("Joe" 34))
((14 "Adam") (34 "Joe") (37 "Fred") (296 "Bert"))

split_line Command and Function

The split_line command or function breaks a line at the current
cursor posi t ion, preserv ing the hor izonta l posi t ion of the
right-hand portion of the line.

Command Format: [{ESC}n] {ESC} X split_line
o r
[{ESC}n] {ESC} {CTRL-O}

Function Format: (split_line [n])

Argument: The argument n, if specified, must be a numeric value.

Action: If the argument n is not specified, let n equal 1.

Let k equal the column position of the current cursor. EMACS
inserts n newlines, followed by k blanks, so that the current line
has been split into n+1 lines, preserving the horizontal position
of all characters on the original line.

The cursor is left at the inserted newline.

The split_line function returns the value NIL.

splitjwindow Command and Function

The split_window command or function splits the current window into
two, putting the cursor into the new window.

A - 1 6 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Command Format: [{ESC}n] {ESC} X splitjwindow
o r
[{ESC}n] {CTRL-X} 2

Function Format: (splitjwindow [n])

Argument: The argument n, if specified, must be a numeric value.

Action: If the value of n is unspecified, let n equal one half the
height of the current window.

EMACS splits the current window into two, moving the cursor into
the second window. The split occurs at the nth line of the window.

The splitjwindow function returns the value NIL.

splitjwindowjstay Command and Function

The splitjwindowjstay command or function splits the current window
into two, leaving the cursor in the current window.

Command Format: [{ESC}n] {ESC} X splitjwindowjstay
or
[{ESC}n] {CTRL-X} 3

Function Format: (splitjwindowjstay [n])

Argument: The argument n, if specified, must be a numeric value.

Action: If the value o*f n is not specified, let n equal one half
the height of the current window.

EMACS splits the current window into two, leaving the cursor in the
original window. The split occurs in the nth line.

The splitjwindowjstay function returns the value NIL.

stemjof_line Function

The stemjofJLine function returns the stem (leading portion) of the
current line.

Format: (stemjof_line [cur])

Argument: The argument cur, if specified, must be a cursor value.

Action: The stem_of_line function returns a string value.

If the argument cur is not specified, let cur equal the current
cursor position.

S e c o n d E d i t i o n A - 1 6 6

EMACS FUNCTIONS AND COMMANDS

EMACS forms a string containing the characters preceding cur on the
same line as cur. The function returns the resulting string.

stopjdoing Special Form
The stopjdoing function stops execution of the current doJEorever
or do_n_times loop.

Format: (stopjdoing)

Arguments: None.
Action: EMACS stops execution of the current do_forever or
do_n_times loop.
The stopjdoing function returns the value NIL.

string Data Type
Variables with the string data type can be assigned character
strings.

string_length Function
The string_length function returns the length of a string argument.

Format: (string_length s)

Argument: The argument s must be a string or character.

Action: The string_length function returns an integer value equal
to the number of characters in the string s, or 1 if s is a
character.

string_of_length_n Function

The stringjof_length_n function pads or truncates a string to a
specified length.

Format: (string_of_length_n s n [p])

Arguments: The argument s must be a string or character. The
argument n must be an integer. The argument £, if specified, must
be a string or character.

Action: The string_of_length_n function returns a string value.
The length of the resulting string is given by the argument n.

If the argument £ is not specified, let £ equal the space
character.

A - 1 6 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

The value of n must be nonnegative.

If the length of string s is greater than n, EMACS forms a new
string by truncating the string s to the length n.
If the length of string s is less then n, EMACS forms a new string
by concatenating sufficient copies oF the string £ to the end of
string s so that the length of the new string is greater than or
equal to n, and then truncates this result to the length n.
The resulting string is returned.

string_to_integer Function
The string_to_integer function converts a string to an integer.

Format: (string_to_integer s)

Argument: The argument s must be a string value.

Action: The string_to_integer function returns an integer value.

The string s must contain decimal digits, optionally preceded by a
sign. EMACS converts the string to the corresponding integer
value, and returns the result.

stringp Function

The stringp function tests whether an argument is a string.

Format: (stringp x)

Argument: The argument x may have any data type.

Action: The stringp function returns a Boolean value.

The value returned is true if the data type of x is string;
otherwise, the value is false.

sublist Function

The sublist function returns a sublist of a given list. It acts on
lists exactly as the substr function does on strings.

Format: (sublist 1st n [k])

Arguments: The argument 1st must be a list value. The argument n
must be an integer. The argument k, if specified, must be an
in teger.

Action: The sublist function returns a list value.

S e c o n d E d i t i o n A - 1 6 8

EMACS FUNCTIONS AND COMMANDS

If the argument k is not specified, let k equal infinity.

EMACS forms a new list by taking items from the list 1st, starting
at item number n, and continuing for k items, stopping if the end
of list 1st is reached.

The resulting list value is returned.

substr Function

The substr function returns a substring of a given string. It is
like the PL/I substr function.

Format: (substr s n [k])

Arguments: The argument s must be a string or character value.
The argument n must be an integer. The argument k, if specified,
must be an integer.

Action: The substr function returns a string value.

If the argument k is not specified, let k equal infinity.

EMACS forms a new string by taking characters from string s,
starting at character position n, and continuing for k characters,
stopping if the end of string s Is reached.

The resulting string value is returned.

Example: The function

(substr "abcdef" 3 2)

returns the string "cd", while the function

(substr "abcdef" 3)

returns the value "cdef".

suffix$ Function

The suffix$ function returns the substring after the rightmost
period (.) in the name of the current buffer or the passed string.

Format: (suffix$ [s])

Argument: The argument s, if specified, must be a string value.

Action: The suffix$ function returns a string value.

A - 1 6 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

If the argument s is not specified, let s equal a string value
containing the name of the current buffer. (To be useful, normally
s must be a string whose value is a treename.)

EMACS computes a new string value, t, as follows:

• If the string s does not contain any occurrence of the
character ".", or if the string s contains the character ">"
but does not contain "." to the right of the rightmost ">",
let t equal "" (the null string).

• Otherwise, let t equal the substring of the string s
containing all cEaracters to the right of the rightmost ".".

The suffix$ function returns the value t.

suijexchangejnark Command and Function

The suijexchangejnark command or function is a SUI version of the
exchangejnark command or function that provides the user with
additional information.

sui_primos_command Command and Function

The suij?rimosjcommand command or function is the SUI version of
the primosjcommand command or function.

sui_set_tabs Command

The sui_set_tabs command establishes the tab settings for SUI
users.

Format: {ESC} X sui_set_tabs

Arguments: None.

Action: The sui_set_tabs command establishes tab settings for SUI
users.

suppress_redisplay Function

The suppress_redisplay funct ion checks or enables/disables
redisp lay.

Format: (suppress_redisplay [b])

Argument: The argument b, if specified, must be a Boolean value.

Action: The suppress_redisplay function returns a Boolean value.

S e c o n d E d i t i o n A - 1 7 0

EMACS FUNCTIONS AND COMMANDS

Let x equal the current value of the redisplay variable.

If the argument b is specified, set the redisplay variable to the
value specified by b.

The suppress_redisplay function returns the value x.

tab Command and Function

The tab command or function moves the cursor to the next tab stop.

Command Format: [{ESC}n] {ESC} X tab
or
[{ESC}n] {CTRL-I}

Function Format: (tab [n])

Argument: The argument n, if specified, must be an integer value.

Action: If n is not specified, let n equal 1.

If n equals 0, no action takes place.

If n is positive, EMACS does the following n times: it moves the
cursor to the next tab-stop position on the current line. If there
are not enough characters remaining on the current line, EMACS
inserts a sufficient number of blanks so that the cursor can move
to the next tab-stop position.

tablist Command and Function

The tablist command and function accepts a series of numbers from
the terminal and sets tab stops at those positions.

Coinmand Format: {ESC} X tablist

Function Format: (tablist)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS prompts you with "Set tab columns separated by
blanks:". You may then type a list of numbers, separated by
blanks, ending in a newline. EMACS sets the tab stops at the
positions you specify.

The tablist function returns the value NIL.

A - 1 7 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

tablist_to_array Function
The tablist_to_array function takes a list of integers and sets tab
stops at the specified positions.
Format: (tablist_to_array 1st)

Argument: The argument 1st must be a list, normally quoted.
Action: The items in the argument 1st must all be integers. EMACS
sets the tab stops at positions indicated by those integers.

The tablist_to_array function returns the value NIL.

Example: (tablist_to_array '(5 13 24 60))

tell_leftjnargin Command
The tell_leftjnargin command or function prints the current left
margin position.
Command Format: {ESC} X tell_leftjnargin

Function Format: (tell_left_margin)

Argument: A numeric argument, if specified, is ignored.
Action: EMACS prints the current left-margin position in the
minibuffer.
Note: The left margin is the value bound to the atom named
fi l l j p r e fi x .

telljnodes Command and Function
The telljnodes command or function displays all modes for the
current buffer. This function is needed for those situations in
which all modes are not shown on the mode line.

Command Format: {ESC} X telljnodes

Function Format: (telljnodes)

Argument: A numeric argument, if specified, is ignored.
Action: EMACS displays all current modes on your screen. Use
{CTRL-G} to restore the display.

S e c o n d E d i t i o n A - 1 7 2

EMACS FUNCTIONS AND COMMANDS

tell jposition Command and Function

The telljposition coinmand or function displays buffer information,
including the current line and character position.

Command Format: {ESC} X telljposition
or
{CTRL-X} =

Function Format: (tel l joosit ion)

Argument: A numeric argument, if specified, is ignored.

Action: In the minibuffer EMACS displays current line and
character informat ion, buffer s ize informat ion, and window
informat ion.

The telljposition function returns the value NIL.

tell_right_margin Command and Function

The tell_right_margin command or function prints the current right
margin position.

Command Format: {ESC} X tell_rightjnargin

Function Format: (tell_right_margin)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS prints the current right-margin position in the
miH iH I f fe r.

terminal_info Function

The terminal_info function queries or sets information about the
user's terminal.

Format: (terminal_info p [v])

Arguments: The argument £ must be an atom chosen from among those
listed below under action. This atom should not be quoted.

The argument y, if specified, must have a data type compatible with
the atom £, as specified below.

Action: The terminal_info function returns a value whose data type
depends upon the argument £.

The argument £ is an atom that specifies a terminal property to be
queried or set. The legal values for the argument £, their data
types, and their meanings are shown in the following table.

A - 1 7 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

type s t r i n g

speed integer

height in teger

width in teger

c r t p Boolean

can insert Boolean

Terminal type

Baud rate

Number of rows in the display

Number of columns in the display

True if the terminal is a CRT

Can insert/delete lines, making screen
refresh a bit faster

If the argument y is specified, and if the property £ is not read
only, EMACS sets the property £ to the value specified by y.

Note that at the present time all properties are read-only.

The terminal_info function returns the old value of the property £.

terminal_type Function
The terminal_type function returns a string containing the terminal
type.
Format: (terminal_type)

Arguments: None.
Action: The terminal_type function returns a string value
containing the type of terminal you are using.

terpri Function

The terpri function inserts a newline.

Format: (terpri cur)

Argument: The argument cur, if specified, must be a cursor value.

Action: If cur is not specified, let cur equal the current cursor
pos i t i on .

EMACS inserts a newline character at the cursor position indicated
by cur, and sets the current cursor to the character following the
newline.

The terpri function returns the value NIL.

Second Edition A-17 4

EMACS FUNCTIONS AND COMMANDS

throw Function

The throw function is like the *throw function, except that the
argument order is different.

Format: (throw body tag)

This is like *throw, except that the body and tag arguments are
reversed. Because throw's argument order makes prograniming quite
difficult, the use of *throw is recommended instead. (See *throw
for further information.)

tld Command

The tld command is a SUI command that lists your file directory in
order of date-and-time last written.

Format: {ESC} X tld

Arguments: None.

Action: EMACS executes the following PRIMOS command at the current
attach point:

LD -LCNG -SKTD

toggle_redisp Command and Function
The toggle_redisp command or function toggles redisplay mode. It
is usually used with slow display terminals.

Command Format: {ESC} X toggle_redisp
or
{CTRL-X} {CTRL-T}

Function Format: (toggle_redisp)

Argument: A numeric argument, if specified, is ignored.
Action: If the redisplay flag is off, EMACS turns it on. If it is
on, EMACS turns it off. (See suppress_redisplay.)
The toggle_redisp function returns the value NIL.

token_chars Variable
The token_chars variable is a global string variable whose value is
a string containing all the characters in the basic character set.
Specifically, it is set to the following character string:
"abcdef ghijklmnc_x_rstuvwxyzABCDEFGHIJKLMNOP^

A - 1 7 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

These tokens are considered to be legal characters in a word. The
forwardjword, backjword, deletejword, and ruboutjword coinmands will
treat all characters in this string as components of a word.

translate Function

The translate function translates a string by replacing one set of
characters with another. This is similar to the PL/I translate
func t ion .

Format: (translate sa sb [sc])

Arguments: The arguments sa and sb, and sc, if specified, must be
string or character values.

Action: The translate function returns a string value.

If the argument sc is not specified, let sc equal a string
containing the entire collating sequence (character set) supported
by EMACS.

If the length of sb is greater than or equal to the length of sc,
then let sb2 equal sb; otherwise, let sb2 equal the string
obtained by concatenating a sufficient number of blanks to the end
of string sb, so that the resulting string is as long as the string
sc.

EMACS forms a new string sa2 from the characters in the string sa
by performing the following steps for k=l to the length of string
sa:

• Let ch be the character in position k of string sa.

• If ch does not appear in the string sc, leave ch unchanged.

• Otherwise, if ch appears in the string sc, and if the
leftmost such appearance is at position m in string sc, let
ch equal the character in position m of string sb.

• EMACS sets the character in position k of string sa2 to ch.

The translate function returns the string sa2.

transpose jword Command and Function

The transpose jword command or function inverts the positions of the
words before and after the current cursor.

Command Format: {ESC} X transposejword
or
{ESC} T

S e c o n d E d i t i o n A - 1 7 6

EMACS FUNCTIONS AND COMMANDS

Function Format: (transposejword)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS transposes the words before and after the current
cursor position. The current cursor is left at the first character
of the second word.

The transposejword function returns the value NIL.

trim Function

The trim function removes leading and trailing blanks from a
s t r i n g .

Format: (trim s)

Argument: The argument s must be a string value.

Action: The trim function returns a string value. The value
returned is computed by removing leading and trailing blanks from
the string s.

trimjdate Command and Function

The trimjdate command or function inserts the current date at the
current cursor position.

Command Format: {ESC} X trimjdate

Function Format: (trimjdate)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS inserts the current date into your buffer at the
current cursor position, using a format similar to the following:

19 Sep 1985

The trimjdate function returns the value NIL.

trimjdt Command and Function

The trimjdt command or function inserts the current date at the
current cursor position.

Command Format: {ESC} X trimjdt

Function Format: (trimjdt)

Argument: A numeric argument, if specified, is ignored.

A - 1 7 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Action: EMACS inserts the current date into your buffer at the
current cursor position, using a format similar to the following:

09/19/85

The trim_dt function returns the value NIL.

turn_mode_off Function

The turnjnode_off function turns off a mode by removing the mode
name from the buffer mode list.

Format: (turrunode_off d)

Argument: The argument d must be a dispatch table.

Action: EMACS removes all occurrences the specified dispatch table
d from the buffer mode list.

The turnjnode_off function returns the value NIL.

Example:

(turnjnodejoff (find_mode 'lisp))

In this statement the finc_mode function returns a dispatch table
for LISP mode, and the turn_mode_off function turns LISP mode off.

turn_mode_on Function

The turojnode_on function turns a mode on and adds the mode name to
the buffer mode list if the mode is not already on.

Format: (turr__mcde_on d [f])

Arguments: The argument d must be a dispatch table. The argument
f, if specified, must be the unquoted atom first.

Action: EMACS turns the specified mode on, and adds the mode name
to the buffer mode list. If the argument f is specified (as the
atom first), EMACS places the new mode in the first position on the
mode list; otherwise, EMACS places it last.

The turnjnode_on function returns the value NIL.

Example:

(turn_mode_on (finc_mode 'lisp) first)

This statement turns LISP mode on and places the new mode first on
the mode list.

S e c o n d E d i t i o n A - 1 7 8

EMACS FUNCTIONS AND COMMANDS

Note: The order of modes in the list is the order in which
dispatch tables are searched while processing key bindings.

twiddle Command and Function

The twiddle command or function transposes the position of the two
characters preceding the current cursor.

Command Format: {ESC} X twiddle
or
{CTRL-T}

Function Format: (twiddle)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS reverses the position of the two characters
preceding the current cursor.

The twiddle function returns the value NIL.

type_tab Command and Function

The type_tab command or function moves the cursor forward by a
specified number of tab stops.

Command Format: [{ESC}n] {ESC} X type_tab

Function Format: (type_tab [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If the argument n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, the cursor is moved forward n tab
stop positions. If the end of the line is reached, EMACS
automatically fills the end of the line with blank characters, up
to the desired tab stop position.

If the value of n is negative, the cursor is moved back (-n) tab
stops, stopping if the beginning of the line is reached.

The type_tab function returns the value NIL.

A - 1 7 9 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

typef Function

The typef function returns an integer indicating the data type of
its argument.

Format: (typef x)

Argument: The argument x may have any data type.

Action: The typef function returns an integer argument. The value
returned depends upon the data type of x, as shown in the following
t a b l e :

Data Type of X Value Returned

any
Boolean
character
in teger
s t r i n g
atom
func t ion
l i s t
cursor
dispatch_table
handler

11
12

window 14
OLTYOA^ IS

uid Function

The uid function returns a string value containing a unique
i d e n t i fi e r .

Format: (uid)

Arguments: None.

Action: The uid function returns a string value.

The string contains characters that may be used as a unique
i d e n t i fi e r .

unmodify Command and Function

The unmodify command or function tells EMACS to treat the current
buffer as if it were unmodified.

Command Format: {ESC} X unmodify
o r
{ESC} ~

Function Format: (unmodify)

S e c o n d E d i t i o n A - 1 8 0

EMACS FUNCTIONS AND COMMANDS

Argument: A numeric argument, if specified, is ignored.

Action: EMACS clears its "modified" flag for the current buffer.

The unmodify function returns the value NIL.

untidy Command and Function

The untidy command or function removes indenting and justification
from a paragraph.

Command Format: {ESC} X untidy

Function Format: (untidy)

Argument: A numeric argument, if specified, is ignored.

Action: The untidy command or function removes indenting and
justification while filling the current paragraph, so that each
line does not have more than the number of characters indicated by
the func t ion (buffe r_ in fo fi l l j co lumn) or by the command
tell_right_margin. It rearranges words on the line so that each
line is about the same length. Use set_right_margin to change the
right margin.

upcase Function
The upcase function converts a string to uppercase.

Format: (upcase s)

Argument: The argument s must be a string value.
Action: EMACS returns a string value obtained by changing all
lowercase letters in s to uppercase, leaving all other characters
unchanged.

uppercase_region Command and Function
The uppercase_region command or function converts all lowercase
letters in the current region to uppercase.

Command Format: {ESC} X uppercase_region
or
{CTRL-X} {CTRL-U}

Function Format: (uppercase_region)

Argument: A numeric argument, if specified, is ignored.

A - 1 8 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Action: EMACS changes all lowercase letters in the current region
to uppercase, leaving all other characters unchanged.

The uppercase_region function returns the value NIL.

Caution: This command must be used with extreme care. If it is
mistakenly applied to the wrong region of text in uppercase and
lowercase, its effect must be undone manually.

uppercasejword Command and Function

The uppercasejword command or function changes the text in one or
more words to uppercase.

Command Format: [{ESC}n] {ESC} X uppercasejword
or
[{ESC}n] {ESC} U

Function Format: (uppercasejword [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If the argument n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, EMACS converts to uppercase all
lowercase letters in the region from the beginning of the current
word (or the next word, if the cursor is on whitespace) to the end
of the nth word, moving forward. The cursor moves to the end of
that region.

If the value of n is negative, EMACS changes to uppercase all
lowercase letters in the region ending at the end of the current
word (or the previous word, if the cursor is on whitespace) and
beginning at the beginning of the (-n)th word preceding the current
cursor position. The cursor is left unchanged

The uppercasejword function returns the value NIL.

user jiame Variable

The userjiame variable is a string variable containing your login
name.

usingjcursor Special Form

The using_cursor function executes PEEL statements and then resets
the cursor.

S e c o n d E d i t i o n A - 1 8 2

EMACS FUNCTIONS AND COMMANDS

Format: (usingjcursor cur sl [s2 ...])

Arguments: The argument cur must be a cursor value. The arguments
sl, s2, and ... must be PEEL statements.

Action: EMACS executes all the statements sl, s2, and ..., and
then performs the following:

(go_to_cursor cur)
The using_cursor function returns the value NIL.

verify Function

The verify function tests a string for legal characters.

This is the PL/I verify built-in function.

Format: (verify sa sb)

Arguments: The arguments sa and sb must be string values.

Action: The verify function returns an integer value.

If all characters of string sa also appear in string sb, then the
function returns 0.

Otherwise, the function returns the position of the first character
in string sa that is not also in string sb.

Example: The function

(verify "ABACUS" "ABCDEFGHIJKLMNOPQRSTUVWXYZ")

returns the value 0, while

(verify "ABACUS" "ABCD")

returns the value 5.

verifyjok Function

The verifyjok function scans back from the current cursor,
searching for a character not in the argument string.

Format: (verifyjok s [n])

Arguments: The argument s must be a string or character value.
The argument n, if specified, must be an integer value.

Action: The verifyjok function returns a Boolean value.

A - 1 8 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

If the argument n is not specified, let n equal 1.

If the value of n is 0, no operation takes place.

Starting from the current cursor position and moving backward,
EMACS searches for the nth occurrence of a character in the text
buffer that does not also appear in the string s. If such a
character is found before reaching the beginning of the buffer,
then EMACS leaves the cursor at that character position and returns
true; otherwise, EMACS leaves the cursor at the beginning of the
buffer and returns false.

If the value of n is less than 0, EMACS performs the following:

(verify_fd (- n))

verify_bk_in_line Function

The verify_bk_in_line function is like verifyjok, except that the
search ends at the beginning of the current line.

verify_fd Function

The verify_fd function searches forward from the current cursor for
a character not in the argument string.

Format: (verify_fd s [n])

Arguments: The argument s must be a string value. The argument n,
if specified, must be an integer value.

Action: The verify_fd function returns a Boolean value.

If the argument n is not specified, let n equal 1.

If the value of n is 0, no operation takes place.

Starting from the current cursor position and moving forward, EMACS
searches for the nth occurrence of a character in the text buffer
that does not also appear in the string s. If such a character is
found before reaching the end of the buffer, then EMACS leaves the
cursor at that character position and returns true; otherwise,
EMACS leaves the cursor at the end of the buffer and returns false.

If n is less than 0, EMACS performs the following:

(verifyjok (- n))

S e c o n d E d i t i o n A - 1 8 4

EMACS FUNCTIONS AND COMMANDS

verify_fd_in_line Function

The verify_fd_in_line function is the same as verify_fd, except
that the search ends at the end of the line.

view_file Command and Function

The view_file command or function allows you to view (look through)
a file in read-only mode without being able to modify it.

Command Format: {ESC} X view_file

Function Format: (view_file [s])

Argument: The argument s, if specified, must be a string value.
Action: If the argument s is not specified, EMACS prompts you with
"View file:". EMACS assigns all characters typed before a newline
is reached to the string variable s.

EMACS opens in view mode the file whose name is specified by the
string s, meaning that you may examine the file but not modify it.

view_kill_ring Command and Function
The view_kill_ring command or function lets you view the contents
of kill buffers.

Command Format: {ESC} X view_kill_ring
or
{CTRL-X} {CTRL-Z} K

Function Format: (view_kill_ring)

Argument: A numeric argument, if specified, is ignored.
Action: EMACS allows you to review your kill buffers. (This
command is described in detail in the EMACS Reference Guide.)

view_lines Command and Function
The view_lines command or function updates your screen on a slow
terminal.

Command Format: {ESC} X viewJLines
or
{CTRL-X} {CTRL-Z} {CTRL-V}

Function Format: (view_lines)

Argument: A numeric argument, if specified, is ignored.

A - 1 8 5 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Action: EMACS updates your display.

The view_lines function returns the value NIL.

Note: This command is used after you have used toggle_redisp to
suppress automatic updating of your display.

vld Command

The vld command is a SUI command that provides a verbose listing of
your file directory.

Format: {ESC} X vld

Arguments: None.

Action: EMACS executes following the PRIMOS command at the current
attach point.

LD -LONG -SRTN

vsplit Command and Function

The vsplit command or function splits your current window
vertically into two windows.

Command Format: {ESC} X vsplit

Function Format: (vsplit)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS splits your current window into two at the current
cursor position.

The vsplit function returns the value NIL.

wait_for_input Function

The wait_for_input function waits for the user to type a character.
The typed character is NOT removed from the input buffer.

Format: (wait_for_input)

Arguments: None.
Action: EMACS waits until the user types a character.

The wait_for_input function returns the value NIL.

S e c o n d E d i t i o n A - 1 8 6

EMACS FUNCTIONS AND COMMANDS

wallpaper Command and Function

The wallpaper command or function inserts all help information into
your current text buffer.

Command Format: {ESC} X wallpaper

Function Format: (wallpaper)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS inserts all of its apropos help text into your
current buffer. This includes all your current bindings.

The wallpaper function returns the value NIL.

whitejdelete Command and Function

The whitejdelete command or function deletes all whitespace around
p o i n t .

Command Format: {ESC} X whitejdelete
or
{ESC} \

Function Format: (whitejdelete)

Argument: A numeric argument, if specified, is ignored.

Action: If the character at the current cursor position or the
character preceding the current cursor position is a whitespace
character, then it and all contiguous whitespace characters are
deleted; otherwise, no action takes place.

The whitejdelete function returns the value NIL.

Note: The whitejdelete function has the same effect as the
deletejwhitejsides function.

whitespace Variable

The whitespace variable is a string variable that contains all the
characters used when searching for whitespace. EMACS initializes
it to a space.

whitespace_to_hpos Function

The whitespace_to_hpos function inserts whitespace until the
specified horizontal position is reached.
Format: (whitespace_to_hpos n)

A - 1 8 7 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Argument: The argument n must be an integer value.

Action: The whitespace_to_hpos function returns a Boolean value.

Let h equal the current horizontal position.

If n is greater than h, EMACS inserts (n-h) blanks at the current
cursor position.

After the insertion is completed, the function returns the value
t rue .

window Data Type

A variable with the window data type represents a screen window.

window_inf o Function

The window_info function sets or queries information about a
window.

Format: (window_info p [x])

Arguments: The argument £ must be an unquoted atom, chosen from
the atom names listed below under action. The argument x, if
specified, must have a data type compatible with the argument £, as
described below.

Action: The window_info function returns a value whose data type
depends upon the argument £.

The following table gives the legal values for the argument £,
along with the corresponding function data type and meaning:

topJLine

bottom line

left column

right_column

D a t a T y p e M e a n i n g

integer The top line of the screen on
which the current window is
displayed, (read-only)

integer The last line on the screen on
which the window is displayed.
(read-only)

integer The leftmost screen column in
which the window appears.
(read-only)

integer The rightmost screen column in
wh ich the w indow appears .
(read-only)

Second Edition A-188

EMACS FUNCTIONS AND COMMANDS

is active

is_ma_or

t o p J . i n e _ c u r s o r c u r s o r

showing_numbers Boolean

column offset

last buffer cursor cursor

mark bottom

Boolean Whether the window is being
redisplayed. (read-only)

Boolean Whether the window is an major
window. This will usually be
true. The minibuffer window is
not a major window, (read-only)

This cursor points into the top
line of the text that appears as
the top line of the window,
(wr i tab le)

Whether line numbering is on.
(wr i tab le)

in teger The va lue o f the hor izonta l
column offset for the window.
(See hcol.) (writable)

The current cursor position for
this window, (writable)

Boolean Mark is at bottom of window,
(wr i tab le)

If the argument x is specified, and if the property corresponding
to the argument £ is not read-only, EMACS sets the property
corresponding to the argument £ to the value of x. This is
permitted only for property shown as "writable" in the above table.

The window_info function returns the old value of the property £
for the current window.

with_cleanup Special Form

The withjcleanup function executes PEEL code and then executes a
handler that will be run whether an error occurs or not. This is
similar to the CLEANUP$ condition in PL/I.

Format: (withjcleanup sl [s2 ...])
handler hsl [hs2 ...])

Arguments: The arguments sl, s2, and ..., and hsl, hs2, and
... must be PEEL statements.

Action: EMACS executes the statements sl, s2, and After
completion of that execution, whether normally or because of error,
EMACS executes hsl, hs2, and ...

The withjcleanup function returns the value NIL.

A-189 Second Edition

EMACS EXTENSION WRITING GUIDE

with_command_abort_handler Special Form
The with_command_abort_handler function executes PEEL code with a
handler for errors.

Format: (with_cominand_abort_handler sl [s2 ...]
command_abort_handler hsl [hs2 ...])

Arguments: The arguments sl, s2, and ..., and hsl, hs2, and
... must be PEEL statements.

Action: EMACS executes sl, s2, and If no error occurs,
execution of the with_command_abortJiandler function terminates.

If an error occurs, EMACS resets the error flags and throw, and
executes hsl, hs2, and ...

The withjcommand_abortJiandler function returns the value NIL.

withjcursor Special Form
The withjcursor function executes a body of code after copying the
current cursor to a temporary cursor.

Format: (with_cursor c sl [s2 ...])

Arguments: The argument c must be an unquoted atom. The arguments
sl, s2, and ... must be PEEL statements.
Action: EMACS copies the current cursor to c and then executes sl,
s2, and ...

with_no_redisplay Special Form
The with_no_redisplay function executes code while suppressing
redisplay.
Format: (with_no_redisplay sl [s2 ...])

Arguments: The arguments sl, s2, and ... must be PEEL statements.
Action: EMACS executes sl, s2, and ... without updating your
display.

wrap Command and Function
The wrap command or function inserts a carriage return if word
wrapping should occur.
Command Format: [{ESC}n] {ESC} X wrap

S e c o n d E d i t i o n A - 1 9 0

EMACS FUNCTIONS AND COMMANDS

Function Format: (wrap [n])

Argument: The argument n, if specified, must be a numeric value.

Action: If the argument n is not specified, let n equal 1.

EMACS inserts its last invocation character (_character_argument)
and checks its horizontal position. If it is greater than the fill
column, wrap replaces it with a newline.

wrap_line_withj?ref ix Function

The wrap_line_withj?refix function specifies the wrap column and
the prefix string.

Format: (wrap_line_withj?refix n s)

Arguments: The argument n must be an integer value. The argument
s must be a string value.

Action: This is the function that actually performs the wrap
operation.

wrapoff Command and Function

The wrapoff command or function is obsolete. Use filljoff.

wrapon Command and Function

The wrapon command or function is obsolete. Use filljon.

write_file Command and Function

The write_file command or function writes the current buffer to the
specified file.

Command Format: {ESC} X write_file

Function Format: (write_file [s])

Arguments: A numeric argument, if specified, is ignored.

The argument s, if specified must be a string value.

Action: If the argument s is not specified, EMACS prompts you with
"write file:" and assigns the typed string to the variable s.

If the value of s is a null string, let s equal the filename
associated with the current buffer.

A - 1 9 1 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

EMACS writes the current buffer to the file whose pathname is ^"^
specified by the string s.

The write_file function returns the value NIL.

Note: This will overwrite an existing file with NO WARNING. (See
also mod_write_file.)

yank_kill_text Command and Function

The yank_kill_text command or function inserts the text saved
during view_kill_ring at the current cursor position.

Command Format: {ESC} X yank_kill_text

{ C T R L - X } { C T R L - Z } { C T R L - Y } ^ \

Function Format: (yank_kill_text)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS inserts the text saved by view_kill_ring into your
text buffer at the current cursor position.

T h e y a n k _ k i l l _ t e x t f u n c t i o n r e t u r n s t h e v a l u e N I L . ^ ^

yankjninibuffer Command and Function

The yankjninibuffer command or function inserts the response to a
previous minibuffer prompt at the current cursor position.

Command Format: [{ESC}n] {ESC} X yankjninibuffer
or
[{ E S C } n] { E S C } { C T R L - Y } ^ ^

Function Format: (yankjninibuffer [n])

Argument: The argument n, if specified, must be an integer value.

Action: If the argument n is not specified, let n equal 0.

EMACS inserts into your current buffer at the current cursor
position the characters typed in response to the (n+l)st previous
minibuffer prompt.

The yankjninibuffer function returns the value NIL.

S e c o n d E d i t i o n A - 1 9 2

EMACS FUNCTIONS AND COMMANDS

yank_region Command and Function

The yank_region command or function inserts a previously killed
region into your current buffer at the current cursor position.
Command Format: {ESC} X yank_region

or
{CTRL-Y}

Function Format: (yank_region [n])

Argument: The argument n, if specified, must be a numeric value.
Action: If the argument n is not specified, let n equal 0.

EMACS inserts the text in the (n+l)st previous kill region into the
current buffer, at the current cursor position.

The yank_region function returns the value NIL.

yank_replace Command and Function
The yank_replace command or function replaces the text inserted
with yank_region with the text in a preceding kill_ring buffer.

Coinmand Format: {ESC} X yank_replace
or
{ESC} Y

Function Format: (yank_replace [n])

Argument: The argument n, if specified, is ignored.
Action: You use yank_replace after a yank_region command or
function.
If the argument n is not specified, let n equal 0.

The yank_replace function replaces the text you have just inserted
with text from the (n+l)st preceding buffer on the kill ring.

Notes: You may use yank_replace repeatedly until the text you want
from the kill ring appears.

EMACS remembers only the last ten or so responses.

yesno Function
The yesno function prompts the user for a yes or no reply.
Format: (yesno s)

A - 1 9 3 S e c o n d E d i t i o n

EMACS EXTENSION WRITING GUIDE

Argument: The argument s must be a string value.

Action: The yesno function returns a Boolean value.

EMACS prompts the user in the minibuffer with the string s. If the
reply is "yes", "OK", or "true", then the yesno function returns
the value true; otherwise, it returns the value false.

S e c o n d E d i t i o n A - 1 9 4

Command
Gross-reference List

In this appendix, all the commands, functions, and operators described
in Appendix A are grouped according to purpose. For example, all the
commands dealing with words, such as capinitial, forward_word, and
lowercasejword, are listed together in the category WORDS.

Use this appendix when you suspect a command or function might exist,
but do not know its name. Select likely names from the categorized
lists, and look up their full descriptions in Appendix A.

The following is a list of all the categories:

Ar i thmet ic Cursor and Mark Informat ion Tabs
Arrays Data Types LISP Tests
Booleans and Date Miscellaneous Type Tests

Relat ionals Deletion and Modes Whitespace
Buffers Copying Movement Windows
Clauses Display Paragraphs Words
Compilation F i l e s PRIMOS

and Loading Help Search and Verify
Control I/O Sentences
Conversion Indentat ion Str ings/Lines/Regions

B-l Second Edition

EMACS EXTENSION WRITING GUIDE

ARITHMETIC

*
+

/
1+
1-
modulo
numberp

ARRAYS

aref
arrayjdimension
array_type
aset
copy_array
fi l l _ a r r a y
make_array

BOQLEANS AND RELATIQNALS
(See also TESTS)

deletejouffer
empty Jouffer j)
endjof Jouf fer j>
find jouffer
fi r s t _ l i n e j ?
go_to_buffer
go_to_cursor
insert
insert jouf
kil l_rest _of Jouf fer
last_line_p
line_is_blank
l i s t j ou f fe rs
markjwhole
nextjouf
overlayjoff
overlayjon
overlay_rubout
overlayer
prepend_to_buf
prevjouf
samejoufferjp
selectjouf
s e l f j n s e r t
t e l l j o s i t i o n
unmodify
window info

&
<
<=

>
>=

CHARACTERS
(See STRINGS/LINES/REGIONS)

CLAUSES

and
eq
not
or

backward_clause
backwardjcil 1 _cl ause
forward_clause
forward kill clause

BUFFERS
See also Files.

2don
2doff
2d
append_tojouf
beginningjofjoufferj?
buffer_info
buffer name

COMPILATION AND LOADING

dump_file
expandjnacro
fasdump
fasload
loadjcompiled
load_lib
loadjpackage
loadjp l jsource

Second Edition B-2

COMMAND CROSS-REFERENCE LIST

P i
pljninibuf fer
set_key
set joe rmanent_key

CONTROL

dispatch
do_forever
do_n_times
else
i f
i f j a t
otherwise
return
select
stopjdoing

CONVERSION

char_to_string
convert_tabs
convert_to_base
integer_to_string
string_to_integer

Ctol
ItoC
ItoP
Ptol
h i g h j b i t j o f f
h ighjbi t jon

ma rkjendjof jword
mark_top
markjwhole
point_cursor_to_string
popmark
pushmark
range_to_str ing
save_excursion
savejposition
setmark
using_cursor
with cursor

DATA TYPES

any
a r ray
atom
Boolean
b u f f e r
character
charp
cursor
dispatch_table
func t ion
handler
in teger
l i s t
numberp
s t r i n g
s t r ingp
typef
window

DATE
CURSOR AND MARK

date
copy jcursor d t
current_cursor europejdt
cursor_info so r t j d t
cursor_on_current_line_p trimjdate
cur sor _same JL ine jp t r im jd t
delete_point_cursor
exchangejnark
get_cursor
go_to_cursor
line_number
makejcursor
mark
markjoottom

B-3 Second Edition

EMACS EXTENSION WRITING GUIDE

DELETION AND COPYING

copy_array
copyjcursor
copyjregion
backward_kil ljclause
backwardjkil 1_1 ine
backward_kil ljsentence
delete_blankj.ines
deletejouffer
deletejchar
deletejpointjcursor
delete_region
delete_white_left
del et e_white_r ight
delete_white_sides
deletejword
f orward_kil 1 _cl ause
f orward_kil ljsentence
kill J. ine
kill_region
kill_rest_of Jouffer
leavejonejwhite
merge_lines
overlayjrubout
ruboutjchar
ruboutjword
view_kil l_r ing
whitejdelete
yankjcill_text
yankjninibuffer
yank_region
yank_replace

DISPLAY

#
t o f f
ton
hco l
h s c r o l l
red isp lay
refresh
repaint
s e t j i s c r o l l
suppr ess_redispl ay
toggle_redisp
view_l ines
with_no_redi splay

FILES

append_to_f il e
file_info
filejiame
filejoperation
find_fi le
f ound_f il ejiook
get_f ilename
insert_f ile
mod_write_file
prepend_to_file
readjfile
save_all_files
save_file
unmodify
view_file
write file

HELP

aproposdescribe
explain_key
helpjchar
wallpaper

I/O

assurejcharacter
clear_and_say
errorjnessage
find_fi le
flush_typeahead
have_input_p
infojnessage
init_local_displays
insert
insertjouf
inse rt_f ile
1 oadj?l_sour oe
loca l jd isp lay jgenera tor
minibuf _response
minibuffer _pr int
minibuffer_response
p r i n l
p r i n t
prompt
prompt_f or _integer
prompt_for_str ing

Second Edition B-4

COMMAND CROSS-REFERENCE LIST

qix)te_command
read
read_character
read_file
reset
sayjnore
self_insert
send_raw_st r ing
sleep_f or _njnil liseconds
te rp r i
wait_for_input
yesno

tell_lef tjnargin
tel l jnodes
te l l j pos i t i on
tell_right_margin
terminal_info
terminal_type
t l d
uid
user_name
v l d
window info

INDENTATION

cr et_indent_rel ative
indent_to_fi l l_prefix
indent_relative
indent_line_to_hpos
sp l i t_ l ine
whitespace_to_hpos

INFORMATION

buffer_info
bufferjiame
case?
case_replace?
cpu_time
curjipos
cur rent_cur sor
cur rent Jiandler
current_line
cur r ent jna j or jwindow
cursor_info
date
dispatch_info
d t
fi l e _ i n f o
fi le j iame
function_info
get_f ilename
handler_info
inse rt_version
line_number
l ines_ in_fi le
l i s t j d i r
ma j or jwindowjcount
rest_of_line
stemof line

LISP

* _ l i s t
*catch
♦throw
append
apply
assoc
car
catch
cdr
cons
decompose
def_auto
defcom
defun
eval
f se t
fsymeval
get
getjoname
intern
lambda
l e t
LISP_comment
LISP_off
LISPjon
l i s t
member
nthcar
nu l l
p r i n l
p r i n t
progn
putprop
quote
remassoc
remove
remprop
set

B-5 Second Edition

EMACS EXTENSION WRITING GUIDE

setq
s o r t _ l i s t
s u b l i s t
t e r p r i
throw

LOADING
(See COMPILATION AND LOADING)

MISCELLANEOUS

abort_oommand
a b o r t j n i n i b u f f e r
abort_or_exi t
cha racter_argument
command_abort
command_abort Jiandler
debug_info
display_errorjioabort
ex i t jn in ibuffer
fill_end_token_inse rt_left
f il 1 _end_token_inse rt jpf x
hcol
ignorejprefix
mul t ip l ie r
numer ic_argument
q u i t
reject
rest r ict _to_sui $
ring_the_bell
scanjerrors
send_raw_st r ing
set_command_abort_flag
sleepjEor _n_mil1iseconds
withjcleanup
with command abort handler

MODES

al l jnodesjoff
dispatch_info
findjnode
setjnode
setjnodejkey
tell jnodes
turnjnodejoff
turn mode on

MOVEMENT
(See also SEARCH, WHITESPACE)

backjchar
back jpara
back_tab
back_to_f i rstjionwhite
backjword
backward_cl ause
backward j?ara
ba l f o r
balbak
begin_l ine
cre t_ indent_re la t ive
end_line
forwardjchar
f orwardjcl ause
forward jpara
forwardjsentence
forwardjword
go_to_cursor
go_to_hpos
goto_l ine
indent_line_to_hpos
indent_relative
indent_to JEil 1 jpr ef ix
movejoottom
move_top
next_line
next_line_command
nextjpage
prev_line
pr ev_l ine_command
scrolljothe r Joackward
scroll other forward

PARAGRAPHS

backwardjpara
fi l l _ o f f
fi l l _ o n
fi l l j p a r a
forward jpara
markjpara
set_f il1 jcolumn
set_lef tjnargin
set_right_margin
untidy

Second Edition B-6

COMMAND CROSS-REFERENCE LIST

PRIMOS

a f
evaluate_af
primos_command
primosjexternal
primos_internal_como
primos_internal_quiet
primos_internal_screen
primos_smsgl

RELATIONAL OPERATORS
(See BOQLEANS AND RELATIONALS)

SEARCH AND VERIFY

case?
casejoff
casejon
case_replace?
case_replace_off
case_replace_on
forward_search
forward_search_command
reverse_search
r ever se_se arch_command
search
searchJoackJE i rst_charset_line
search_back_f i rst_not_charset

_l ine
search Jok
search_bk_in_line
searchjcharsetjoackward
search_charset_forward
search_fd
search_fd_in_line
search_f or _f i rst_charset_line
search_f or _f i rstjiot _charset_line
search_not_charset_backward
search_not_charset_forward
ver i f y
ver i fy jok
verify_bk_in_line
verify_fd
verify_fd_in_line

SENTENCES

backward_sentence
backward_kil l_sentence
forward_sentence
forward kill sentence

STRINGS/LINES/REGIONS

NL
begin_line
beginning_of_line_p
capin i t ia l
catenate
center_l ine
copyjregion
cr
curjipos
cur rent_charact er
current_line
downcase
endj.ine
fi r s t _ l i n e j >
goto_line
indent_line_to_hpos
index
k i l l _ l i n e
k i l l_region
last_ l ine jo
line_is_blank
linejiumber
looking_at
looking_at_char
lowercase_region
lowercasejword
next_line
nth
open_line
prev_line
query_replace
range_to_str ing
removejcharset
replace
rest_of_line
string_length
st r ing jof _length_n
stringp
substr
tab
translate
t r i m
twiddle

B-7 Second Edition

EMACS EXTENSION WRITING GUIDE

upcase TYPE TESTS
uppercase_region
uppe r case jword atom

charp
numberp
stringp

TABS typef

back_tab
convert_tabs
default_tabs WHITESPACE
get_tab (See also TABS)
insert_tab
reset_tabs atjwhitejchar
save_tab back_to_f i rstjionwhit e
settab cret_indent_relative
settabs from table delete_white_left
tab delete_white_right
t ab l i s t deletejwhitejsides
tablist_to_ar ray indent_to_f ill_pref ix
type_tab indent_relative
whitespace_to_hpos indent_line_to_hpos

leave_one_white
skip_back_to_white
skipjoackjoverjwhite

TESTS skipjoverjwhite
skip_to_white

atjwhitejchar splitJLine
beginningjof _buffer_p whitespace
bolp whitejdelete
cursorjon_current_linej)
cur sor _same_l ine jp
empty Jouf fer j)
endjof Jouf ferjp WINDOWS
endjof _1 ine j?
eolp cur rentjna j or jwindow
first J.inejp go to window
have input jp hcol
i f hscrol l
i f _a t ma j or jwindow_count
l a s t j i n e j p modjonejwindow
line_isJolank modjspl itjwindow
looked_at onejwindow
looking_at other jwindow
more args_p reset
n u l l scrolljothe r Joackward
samejoufferjp scrolljothe r_f orward

select_any jwindow
se t j i s c ro l l
splitjwindow
split_window_stay
vsp l i t
window_info

Second Edition Br-8

COMMAND CROSS-REFERENCE LIST

WORDS

backjword
capinitial
deletejword
forwardjword
lowercasejword
markjendjof jword
rubout_word
token_chars
transposejword
uppercasejword

B ^ ? S e c o n d E d i t i o n

INDEX

Inde:

tells line numbering status,
A-2

OFF
toff turns line numbering off,

A-2

ION
ton turns line numbering on, A-2

St abbreviation for "and", 4-8,
A-3

SARGS
Stargs abbreviation for

&arguments, 5-6, 5-7, 5-9, A-3
SARGUMENES

Stargs abbreviation for
Arguments, 5-6, 5-7, 5-9, A-3

SARGUMENTS (Continued)
Starguments to start argument

definitions of defcom, 5-6,
5-7, 5-9, A-3

&CHARACTER_ARGUMENT
Stcharacter_argument with defcom

for keystroke passing, 5-9, A-3
Stchar_arg abbreviation for

Stcharacter_argument, 5-9, A-3

&CHARJVRG
&char_arg abbreviation for

_character_argument, 5-9, A-3

-DEFAULT
Sdefault for default value of

defcom numeric argument, 5-5,
5-6, 5-7

X-l Second Edition

EMACS EXTENSION WRITING GUIDE

StDOC
&doc abbreviation for

Sdocumentation, 5-3, 5-8, A-3

StDOCUMENTATION
Stdoc abbreviation for

-documentation, 5-3, 5-8, A-3
Sdocumentation to insert

documentation into defcom,
5-3, 5-8, A-3

&EVAL
Seval to evaluate defun

arguments, 5-24, A-4

ScIGNDRE
Stignore to ignore defcom numeric

arguments, A-4

StINTEGER
Stinteger for defcom integer

arguments, 5-6, A-4

StLOCAL
Stlocal for defun local

variables, 5-17, 5-24, 5-29,
A-4

&MACRO
Smacro for defun list return, A-4

StNA
Stna abbreviation for

&numeric_arg, 5-29, 5-4, 5-5,
5-6, 5-9, A-4

StNUMERICJVRG
&na abbreviation for

Stnumeric_arg, 5-29, 5-4, 5-5,
5-6, 5-9, A-4

&numeric_arg for defcom numeric
arguments, 5-29, 5-4, 5-5,
5-6, 5-9, A-4

-OPTIONAL
Stoptional for defun arguments,

5-15, 5-16, 5-24, A-4

StPASS
Stpass for defcom numeric

argument local variable, 5-29,
5-5, A-5

StPREFIX
Sprefix for defcom invocation

character insertion, A-5

&PROMPT
Stprompt for defcom argument

prompting, 5-6, 5-7, A-5

StQUOTE
"e for binding of defun

arguments, 5-24, A-5

StREPEAT
Strepeat for defcom iteration

count, A-5

StREST
Strest to put defun arguments

into a list, 5-24, A-5

StRETURNS
Streturns for data type returned

by defun function, 5-19, 5-22,
5-24, A-6

SSTRING
Ststring for defun string

argument, A-6

StSYMBQL
Stsymbol for defun symbol

argument, A-6

quote ' to return argument
without evaluating it, 3-10,
3-25, A-137

* for multiplication, 3-14, A-6

*CATCH
*catch goto label or on-unit

function, A-7

♦THROW
*throw goto or on-unit function,

A-8

*J_IST
* list to construct a list, A-6

Second Edition X-2

INDEX

<=
+ for addition, 3-14, A-9

- for subtraction or negation,
3-15, A-9

-ULIB
-ULIB option to load fasload

extension library, 2-13

suffix$ to return substring
after rightmost period (.),
A-169

.EFASL
file name conventions with .EM

and .EFASL suffixes, 2-13

.EM
file name conventions with .EM

and .EFASL suffixes, 2-13

/
/ for division, 3-16, A-9

1+
1+ to increment argument, 3-15,

A-10

1-
1- to decrement argument, 3-15,

A-10

2D
2d to test two-dimensional mode,

A-10

2D0FF
2doff to turn off

two-dimensional mode, A-ll

2D0N
2don to turn on two-dimensional

mode, A-ll

<, <=, =, ~=, >, >= relation
operators, 4-8, A-ll

<, <=, =, ~=, >, >= relation
operators, 4-8, A-ll

<, <=, =, ~=, >, >= relation
operators, 4-8, A-ll

>=

<, <=, =, ~=, >, >= relation
operators, 4-8, A-ll

<f <-r ~f ~=r >t >- relation
operators, 4-8, A-ll

ABBREV
ABBREV PRIMDS command, 2-13

ABBREVIATION
& abbreviation for "and", 4-8,

A-3
Sargs abbreviation for

&arguments, 5-6, 5-7, 5-9, A-3
Stchar_arg abbreviation for

Stcharacter_argument, 5-9, A-3
sdoc abbreviation for

-documentation, 5-3, 5-8, A-3
Stna abbreviation for

Stnumeric_arg, 5-29, 5-4, 5-5,
5-6, 5-9, A-4

bolp abbreviation for
beginning_of_line_p, A-32

eolp abbreviation of
enc__of_linejp, A-62

first l inep abbrev iat ion for
fi rs t_ l ine_p , A-73

lastl inep abbreviation for
last_l ine_p, A-99
abbreviation for "not", 4-8,
A-14

I abbreviation for "or", 4-8,
A-14

ABORT
abort_<xmmand {CTRL-G} to abort

command, A-14
ignorejprefix to abort partially

completed command sequence,
A-91

set_commanc_abort_flag to abort
command, A-155

X-3 Second Edition

EMACS EXTENSION WRITING GUIDE

ABORT (Continued)
with_conimanc_abortJiandler to

execute PEEL code with a
command abort handler for
errors, A-190

ABORT_CDMMAND
abort_command {CTRL-G} to abort

command, A-14
abortjninibuffer variant of

abort_command, A-14
abort_or_exit variant of

abort_command, A-15

ABORTJONIBUFFER
abortjninibuffer variant of

abort_command, A-14

ABORTJDRJXIT
abort_or_exit variant of

abort_command, A-15

ACTION
select to evaluate and compare

value to determine action,
4-1, 4-9, A-152

ALL
get_cursor to get list of all

cursor_info cursor information
values, A-83

save_all__f iles to save all
modified files, A-147

token_chars global variable with
all characters in word, 5-28,
A-175

wallpaper to insert all help
information into text buffer,
A-187

ALLOCATE
allocation and freeing of local

variables, 5-31
releasing allocated array

storage, 3-23

ALI_MDDESJDFF
all_modes_off to turn all modes

off, A-15

ALTERNATIVE
"else" alternative to "if", 4-1,

4-5, A-61

ACTIVE
af to insert active PRIMDS

function result, A-15
evaluate_af to evaluate active

PRIMDS function, A-64

AE©
cons to add item to list, 3-28,

A-41

ADDITION
+ for addition, 3-14, A-9

ADJUST
filljpara {ESC} Q to fill and

adjust a paragraph, A-71

AF
af to insert active PRIMDS

function result, A-15

AFTER
suffix$ to return substring

after rightmost period (.),
A-169

AND
St abbreviation for "and", 4-8,

A-3

ANY
"any" data type, 5-27, A-16

APPEND
append to lists, 3-27, 3-27,

A-16, A-16
appena__to_buf {CTRL-X} A to

append region to buffer, 7-7,
A-16

append_to_file {CTRL-X} {CTRL-Z}
A to append region to file,
7-7, A-17

APPENDJDD_BUF
appeno_to_buf {CTRL-X} A to

append region to buffer, 7-7,
A-16

APPEND_TD_FILE
append_to_file {CTRL-X} {CTRL-Z}

A to append region to file,
7-7, A-17

Second Edition X-4

INDEX

APPLY
apply to a function to list of

arguments, A-17, A-17

APROPOS
apropos {CTRL-_} A help facility

to retrieve list of commands,
1-2, 5-3, A-18

AREF
aref to return value of array

element, 3-21, A-18

ARGS
Stargs abbreviation for

Starguments, 5-6, 5-7, 5-9, A-3
ARGUMENT

Sargs abbreviation for
Starguments, 5-6, 5-7, 5-9, A-3

Starguments to start argument
definitions of defcom, 5-6,
5-7, 5-9, A-3

Sdefault for default value of
defcom numeric argument, 5-5,
5-6, 5-7

Steval to evaluate defun
arguments, 5-24, A-4

Stignore to ignore defcom numeric
arguments, A-4

-integer for defcom integer
arguments, 5-6, A-4

Snumeric_arg for defcom numeric
arguments, 5-29, 5-4, 5-5,
5-6, 5-9, A-4

Stoptional for defun arguments,
5-15, 5-16, 5-24, A-4

&pass for defcom numeric
argument local variable, 5-29,
5-5, A-5

Stprompt for defcom argument
prompting, 5-6, 5-7, A-5

"e for binding of defun
arguments, 5-24, A-5

Strest to put defun arguments
into a list, 5-24, A-5

&string for defun string
argument, A-6

Stsymbol for defun symbol
argument, A-6

apply to a function to list of
arguments, A-17

ARGUMENT (Continued)
argument handling with defcom,

5-3
character_argument to get

character argument to command,
A-39

defun with one argument, 5-14
defun with several arguments,

5-15
defun without arguments, 5-13
eval to evaluate arguments,

3-11, A-64
functions with expressions as

arguments, 3-8
functions with no arguments, 3-7
list to get list of arguments,

3-27, A-103
more_args_p to test string

arguments pending, A-115
multiplier to multiply numeric

argument by four, A-116
numberp to test if argument is a

number, A-120
numeric_argument to get numeric

argument to defcom command,
5-2, 5-4, A-120

quote ' to return argument
without evaluating it, 3-10,
3-25, A-137

save_excursion to save cursor
and modes and execute
arguments, 7-10, A-147

savejposition to save cursor and
modes and execute arguments,
A-148

stringp to test for string
argument, A-168

typef to get data type of
argument, A-180

ARITHMETIC
arithmetic operations, 3-13

AROUND
white_delete {ESC} \ to delete

white space around point, A-187

ARRAY
aref to return value of array

element, 3-21, A-18
array data type, 5-26, A-19

X-5 Second Edition

EMACS EXTENSION WRITING GUIDE

ARRAY (Continued)
arrays, 3-18
array_dimension for number of

dimensions in an array, 3-24,
A-19

array_type for data type of
array, 3-24, A-19

aset to set array element, 3-19,
3-22, A-19

copy_array to copy arrays, A-43
fil l_array to in i t ia l ize an

entire array, 3-20, 3-21, 4-4,
A-69

looping with arrays, 4-4
make_array to create an array,

3-18, 3-21, 4-4, A-109
releasing allocated array

storage, 3-23
setq for arrays with multiple

names, 3-23

ARRAYJ)IMENSION
array_dimension for number of

dimensions in an array, 3-24,
A-19

ARRAYJTCPE
array_type for data type of

array, 3-24, A-19

ASET
aset to set array element, 3-19,

3-22, A-19

ASSIGN
assignment as side-effect of

setq, 3-10
putprop to assign tag and value

to property list (plist), A-135
setq to assign value to atom,

3-10, A-160

ASSIGNMENT
assignments, 3-10

ASSOC
assoc to look up item in

association list, A-20

ASSOCIATION
assoc to look up item in

association list, A-20

ASSURELCHARACTER
assure_character to get next

keyboard character, 6-4, A-20

ATOM
atom data type, 3-12, 5-26
atom to test for atom, A-21
atoms, 3-2
atoms with integer data type, 3-2
fset to set the function cell of

an atom, A-81
fsymeval to get contents of the

function cell of an atom, A-81
get_pname to get print name of

atom, A-84
set to set an atom value, A-155
setq to assign value to atom,

3-10, A-160

AT_WHITEL_CHAR
at_white_char to test if at

white space character, 4-6,
A-21

AUTOLOADJLIB
autolcacLlib to fasload file and

execute command, A-21

AUTOMATIC
def_auto to make a function

available for automatic
loading, A-51

AVAILABLE
def_auto to make a function

available for automatic
loading, A-51

BACKSPACE
rubout_char {CTRL-H} {backspace}

{delete} to delete character,
7-2, A-145

BACKWARD
backwarajclause(f) {CTRL-X}

{CTRL-Z} {CTRL-A} to move
cursor backward by clauses,
7-6, A-25

backwarc_kill_clause {CTRL-X}
{CTRL-Z} {CTRL-H} to kill text
backward by clauses, 7-6, A-26

Second Edition X-6

INEEX

BACKWARD (Continued)
backwaraLkill_line {CTRL-X}

{CTRL-K} to kill text backward
by lines, A-27

backward_kill_sentence {CIRL-X}
{CTRL-H} to kill text backward
by sentences, 7-6, A-27

backwarcLpara {CIRL-X} [to move
cursor backward by paragraphs,
5-11, A-28

backwarajsentence(f) {ESC} A to
move cursor backward by
sentences, 7-6, A-28

back_char {CTRL-B} to move
cursor backward by characters,
7-2, A-22

bacKjpage {ESC} V to move cursor
backward by pages, A-22

bacK_tab to move cursor backward
by tabs, A-23

bacK_to_nonwhite {ESC} M to move
cursor backward to nonwhite
space character, A-23

bacKjword {ESC} B to move cursor
backward by words, 7-4, A-24

balbak {ESC} {CTRL-B} to match
parentheses backward in LISP
mode, A-30

begin_line {CTRL-A} to move
cursor backward to beginning
of line, 7-5, A-31

reverse_search (_command)
{CTRL-R} to search backward,
A-144

scroll_other_backward to scroll
other window backward, A-149

search_bk and search_b!_ir_line
to search backward for set of
characters, A-150

skip_back_over_white to move
cursor backward over white
space characters, 7-2, A-161

skipjoacl_,to_white to move
cursor backward to white space
character, 7-2, A-162

verifyjok and verify_Jok__in_JLine
to search backward for
character not in string, A-183

BACK_CHAR
back_char {CTRL-B} to move

cursor backward by characters,
7-2, A-22

BAOLPAGE
bacKjpage {ESC} V to move cursor

backward by pages, A-22

BACKJTAB
back_tab to move cursor backward

by tabs, A-23

BACK_TO_NDNWHITE
bacK_to_nonwhite {ESC} M to move

cursor backward to nonwhite
space character, A-23

BACK_WORD
bacKjword {ESC} B to move cursor

backward by words, 7-4, A-24

BAIBAK
balbak {ESC} {CTRL-B} to match

parentheses backward in LISP
mode, A-30

BALFOR
balfor {ESC} {CTRL-F} to match

parentheses forward in LISP
mode, A-30

BASE
convert_to_base to convert

integer to numeric base, A-42

BEGIN
beginning_of_buffer_p to test if

cursor at beginning of buffer,
4-6, A-31

beginning_of_line_p to test if
cursor at beginning of line,
4-6, 7-5, A-32

begin_line {CTRL-A} to move
cursor backward to beginning
of line, 7-5, A-31

fincLbuffer to move to beginning
of buffer, A-71

markjpara {ESC} H to mark end of
paragraph and move cursor to
beg inn ing , A- l l l

mark_whole {CTRL-X} H to mark
end of buffer and move cursor
to beginning, A-ll l

prepenc_to_buf {CTRL-X} P to
prepend region to beginning of
buffer, 7-7, A-125

X-7 Second Edition

EMACS EXTENSION WRITING GUIDE

BEGIN (Continued)
prepend__to_file {CTRL-X}

{CTRL-Z} P to prepend region
to beginning of file, 7-7,
A-126

BEGINNING_OFJBUFFEi_P
beginning_of_buffer_p to test if

cursor at beginning of buffer,
4-6, A-31

BEGINNINGLOF_LINE_P
beginning_of__line_p to test if

cursor at beginning of line,
4-6, 7-5, A-32

bolp abbreviation for
beginning_of_line_p, A-32

BEGIHJiINE
beginjine {CTRL-A} to move

cursor backward to beginning
of line, 7-5, A-31

BELL
ring_the_bell type send bell

{CTRL-G} on terminal, A-145

BIND
Stquote for binding of defun

arguments, 5-24, A-5
binding mode functions and

commands, 8-4
creating, transforming, binding

macros extensions, 2-1
let to bind variables to values

and execute expressions, A-100
setjcey to bind keypath to

function name, 2-11, A-156
setjnode_key to bind keypath to

command, 8-4, A-158
set_permanent_key to bind

keypath to function name,
2-11, 2-8, A-158

BIT
high_bit_off to turn off

high-order bits in string
characters, 6-6, A-89

high_bit_on to turn on
high-order bits in string
characters, 6-6, A-90

BIT (Continued)
ItoP to convert integer to Prime

character with high-order bit,
6-5, A-13

Ptol to convert Prime character
with high-order bit to
integer, 6-6, A-13

BLANK
deleteJolanKJLines {CTRL-X}

{CTRL-0} to delete blank
lines, A-53

line_is_blank to test current
line blank, 4-6, A-101

trim to remove leading and
trailing blanks, 7-2, A-177

BOLP
bolp abbreviation for

beginning_of_line_p, A-32

BOOLEAN
Boolean data type, A-32
boolean data type, 5-26

BOTTOM
marKJoottom {CTRL-X} {CTRL-Z} >

to mark bottom of buffer, A-110
movejoottom {ESC} > to move

cursor to bottom of buffer,
A-115

BUFFER
appen6_to_buf {CTRL-X} A to

append region to buffer, 7-7,
A-16

beginning_of Joufferjp to test if
cursor at beginning of buffer,
4-6, A-31

buffer conditions and tests, 4-6
buffer_info to get buffer

information, 9-1, A-32
buffer jiame to get buffer name,

A-34
create_text_save_buffer$ for

circular list of buffers, A-45
date to insert date into text

buffer, A-49
deletejxiffer to delete buffer,

A-53
dt to insert date and time into

text buffer, A-60

Second Edition X-8

INDEX

BUFFER (Continued)
emptyjoufferjp to test buffer

empty, 4-6, A-61
end_of_bufferj? to test if

cursor at end of buffer, 4-6,
A-62

enti t ies: character, whitespace,
word, line, region, buffer,
clause, sentence, paragraph,
7 -1

europe_dt to insert date and
time in European format into
text buffer, A-63

exit jninibuffer to exit from
minibuffer, A-65

filejiame to get buffer default
file name, A-68

finc_buffer to move to beginning
of buffer, A-71

first_line_p to test if cursor
at first line of buffer, 4-6,
7-5, A-73

goto_line to move cursor to line
of buffer, 7-5, A-87

go_to_buffer to move cursor to
buffer, A-85

go_to_window to move cursor to
buffer of window, A-86

insertjouf {CTRL-X} {CTRL-Z} I
to insert text buffer, A-95

insert_file {CTRL-X} I to insert
file into buffer, A-95

ki l l_rest_of_buffer to delete
text to end of buffer, A-99

last_Jine_p to test if cursor at
last line of buffer, 4-6, 7-5,
A-99

listjxiffers {CTRI_X} {CTRL-B}
to list text buffers, A-103

markjoottom {CTRL-X} {CTRL-Z} >
to mark bottom of buffer, A-110

mark_top {CTRL-X} {CTRL-Z} < to
mark top of buffer, A-lll

marK_whole {CTRL-X} H to mark
end of buffer and move cursor
to beginning, A-lll

mod_write_file {CTRL-X} {CTRL-W}
to write buffer to file, A-114

movejoottom {ESC} > to move
cursor to bottom of buffer,
A-115

BUFFER (Continued)
move_top {ESC} < to move cursor

to top of buffer, A-116
nextjouf to cycle to next text

buffer, A-116
prepend_to_buf {CTRL-X} P to

prepend region to beginning of
buffer, 7-7, A-125

prevjouf {ESC} P to cycle to
previous text buffer, A-126

reaajfile to read a file into
text buffer, A-138

samejouf ferjp to test cursors in
same text buffer, A-146

save_file {CTRL-X} {CTRL-S}
{CTRL-X} S to save buffer in
file, A-147

scan_errors to scan buffer for
language errors, A-148

selectjouf {CTRL-X} B to change
buffers, 2-4, A-153

selfjinsert and overlayer to
insert character into buffer,
A-124, A-154

setjnode to set EMACS buffer
mode, A-157

sort_dt to insert date into
buffer in sortable format,
A-16 4

telljposition {CTRL-X} = to
display buffer information,
A-173

uninodify {ESC} ~ to make buffer
as if unmodified, A-180

view_kill_ring {CTRL-X} {CTRL-Z}
K to view contents of kill
buffers, 7-12, A-185

wallpaper to insert all help
information into text buffer,
A-187

write_file to write buffer to
fi le, A-191

BUFFERJNFO
buffer_info to get buffer

information, 9-1, A-32

BUFFEI_NAME
bufferjiame to get buffer name,

A-34

X-9 Second Edition

EMACS EXTENSION WRITING GUIDE

BUILD
lambda to build function object,

A-99

CAPINITIAL
capinitial to change character

to upper case, A-34

CAR
car to return first item in

list, 3-28, A-35
nthcar to get n'th car of a

l ist , A-119

CASE
capinitial to change character

to upper case, A-34
case? to test case in searching,

A-35
case_off and case_on for upper

and lower case in searches,
A-35

case_replace? to test case in
replacing, A-36

case_replace_off and
case_replace_on for upper and
lower case in replacing, A-36

downcase to convert upper case
letters to lower case, 7-14,
7-16, A-60

lowercase_region {CTRL-X}
{CTRL-L} to change letters in
region to lower case, A-107

lowercase_word {ESC} L to change
letters in word to lower case,
A-108

upcase to convert string to
upper case, 7-14, A-181

upper and lower case letters in
keypaths, 2-11

uppercase_region {CTRL-X}
{CTRL-U} to convert letters in
region to upper case, A-181

uppercase_word {ESC} U to
convert words to upper case,
A-182

CASE?
case? to test case in searching,

A-35

CASEJOFF
casejoff and case_on for upper

and lower case in searches,
A-35

CASELPN
case_off and case_on for upper

and lower case in searches,
A-35

CASELREPLACE?
case_replace? to test case in

replacing, A-36

CASELREPLACELOFF
case_replace_off and

case_replace_on for upper and
lower case in replacing, A-36

CASELREPI_ACE_JDN
case_replace_of f and

case_replace_on for upper and
lower case in replacing, A-36

CATCH
*catch goto label or on-unit

function, A-7
catch goto label or on-unit

function, A-37

CATENATE
catenate to concatenate strings,

7-14, A-37

CDR
cdr to return list with first

item removed, 3-28, A-37

CELL
fset to set the function cell of

an atom, A-81
fsymeval to get contents of the

function cell of an atom, A-81

CENTER
center_line {CTRL-X} {CTRL-Z} X

to center lines of text, 5-17,
A-38

CENTERJiINE
centerJLine {CTRL-X} {CTRL-Z} X

to center lines of text, 5-17,
A-38

Second Edition X-10

INDEX

CHANGE
capinitial to change character

to upper case, A-34
lowercase_region {CTRL-X}

{CTRL-L} to change letters in
region to lower case, A-107

lowercase_word {ESC} L to change
letters in word to lower case,
A-108

moc_one_window {CTRL-X} 1 to
change multiwindow display to
one window, A-ll3

one_window to change multiwindow
display to one window, A-121

selectjouf {CTRL-X} B to change
buffers, 2-4, A-153

CHARACTER
Stpref ix for defcom invocation

character insertion, A-5
assure_character to get next

keyboard character, 6-4, A-20
at_white_char to test if at

white space character, 4-6,
A-21

bacK_char {CTRL-B} to move
cursor backward by characters,
7-2, A-22

back_to_nonwhite {ESC} M to move
cursor backward to nonwhite
space character, A-23

capinitial to change character
to upper case, A-34

character data type, 5-26, A-39
character entity, 7-2
character_argument to get

character argument to command,
A-39

charp to test character data
type, A-39

char_to_string to convert
character to string, 6-5

control characters in keypaths,
2-10

Ctol to convert character to
integer, 6-5, A-12

current_character to get
character at cursor, 7-2, A-46

delete_char {CTRL-D} to delete
characters, 7-2, A-54

entit ies: character, whitespace,
word, line, region, buffer,
clause, sentence, paragraph,
7-1

CHARACTER (Continued)
f ill__enc_toker_insert__lef t and

fil]_jen6__toker_insert_pfx to
wrap to fill column and insert
command characters, A-70

forwarc_char {CTRL-F} to move
cursor forward by characters,
7-2, A-74

high_bit_off to turn off
high-order bits in string
characters, 6-6, A-89

high_bit_on to turn on
high-order bits in string
characters, 6-6, A-90

ItoC to convert integer to
character, 6-5, A-12

ItoP to convert integer to Prime
character with high-order bit,
6-5, A-13

leave_one_white {ESC} {SPACE} to
delete extra white space
characters, A-100

looking_at_char to test
character at current cursor,
A-107

merge_lines {ESC} ~ to merge
lines by replacing newline
character with space, A-ll2

NL newline character global
variable, A-13

nth to get n'th character in
s t r i ng , A - l l 8

overlay_rubout to delete a
character in overlay mode,
A-123

Ptol to convert Prime character
with high-order bit to
integer, 6-6, A-13

quote_command {CTRL-Q} to read
typed character l i teral ly,
A-137

read_character to read typed
character, 6-5, A-138

remove_charset to remove
characters from string, 7-14,
A-141

rubout_char {CTRL-H} {backspace}
{delete} to delete character,
7-2, A-145

searchJok and search_bk__in_Jine
to search backward for set of
characters, A-150

X - l l Second Edition

EMACS EXTENSION WRITING GUIDE

CHARACTER (Continued)
searchJEd and search__fd_in_line

to search forward for set of
characters, A-151

self_insert and overlayer to
insert character into buffer,
A-124, A-154

skip_bacK_over_white to move
cursor backward over white
space characters, 7-2, A-161

skipJoacK_to_white to move
cursor backward to white space
character, 7-2, A-162

skip_over_white to move cursor
forward over white space
characters, 7-2, A-162

skip_to_white to move cursor
forward to white space
character, 7-2, A-163

token_chars global variable with
all characters in word, 5-28,
A-175

translate to translate a string
replacing characters, 7-14,
A-176

twiddle {CTRL-T} to reverse
character positions, 7-2, A-179

verify to test string for legal
characters, A-183

verifyjok and verify_bK_in_JLine
to search backward for
character not in string, A-183

verify_fd and verify_fc_ii_line
to search forward for
character not in string, A-184

wait_for_input to wait for user
typed character, A-186

whitespace global variable with
white space characters, 5-28,
A-187

OIARACTER__ARGUMENT
_character_argument with defcom

for keystroke passing, 5-9, A-3
Stchar_arg abbreviation for

Stcharacter_argument, 5-9, A-3
character_argument to get

character argument to command,
A-39

CHARP
charp to test character data

type, A-39

CHAR_ARG
Stchar_arg abbreviation for

Stcharacter_argument, 5-9, A-3

CHARjrOjSTRING
char_to_string to convert

character to string, 6-5

CIRCULAR
create_text_saveJouffer$ for

circular list of buffers, A-45

CLAUSE
backward_clause(f) {CTRL-X}

{CTRL-Z} {CTRL-A} to move
cursor backward by clauses,
7-6, A-25

backwarc_kill_clause {CTRL-X}
{CTRL-Z} {CTRL-H} to kill text
backward by clauses, 7-6, A-26

clause entity, 7-5
entities: character, whitespace,

word, line, region, buffer,
clause, sentence, paragraph,
7-1

forwardjclause (f) {CTRL-X}
{CTRL-Z} {CTRL-E} to move
cursor forward by clauses,
7-6, A-74

forwarc_kill_clause {CTRL-X}
{CTRL-Z} {CTRL-K} to kill text
forward by clauses, 7-6, A-76

CLEANUP
wit±_cleanup to execute PEEL

code and perform cleanup, A-189

CLEAR
init_local__di splays to clear

screen and start printout
mode, 6-6, A-94

CLEARJVND_SAY
clear_anc_say variant of

init_local__displays, A-39

Second Edition X-12

INDEX

CLOSE_PAREN
closejparen to match parentheses

in LISP mode, A-40

CODE
pi to compile and execute PEEL

source code, 2-7, 3-5, 5-2,
A-124

with_cleanup to execute PEEL
code and perform cleanup, A-189

with_cominancl_abortjiandler to
execute PEEL code with a
command abort handler for
errors, A-190

with_cursor to execute PEEL code
and reset cursor, 7-11, 7-8,
A-190

with_no_redisplay to execute
PEEL code suppressing
redisplay, A-190

COLLECT
collectjnacro {CTRL-X} (to

collect keystrokes for macro,
2-2, A-40

finishjnacro {CTRL-X}) to end
collect keystrokes for macro,
2-2, A-73

O)LLECT__MACR0
collect_macro {CTRL-X} (to

collect keystrokes for macro,
2-2, A-40

COLUMN
fill_enc_,token_insert_left and

f ill_end_token_insert_pfx to
wrap to fill column and insert
command characters, A-70

hcol to get or set horizontal
column, A-89

hscroll to set horizontal column
(hcol), A-90

lisp_comment to move cursor to
LISP mode comment column and
insert semicolon, A-102

settabs_fron_table or setft to
set tab stops from column
positions, A-160

set_fill_column to fill mode
column, A-155

OOLUMN (Continued)
wrapJLine_with_prefix to specify

wrap column and prefix string,
A-191

COMBINE
combining defcom commands with

defun functions, 5-24

OOMMAND
ABBREV PRIMDS command, 2-13
abort_command {CTRL-G} to abort

command, A-14
apropos {CTRL-_} A help facility

to retrieve list of commands,
1-2, 5-3, A-18

autoload_lib to fasload file and
execute command, A-21

binding mode functions and
commands, 8-4

character_argument to get
character argument to command,
A-39

combining defcom commands with
defun functions, 5-24

defcom to define a command, 2-4,
5-2, 5-8, A-52

describe {CTRL-_} D to get EMACS
command information, 1-2, A-57

extend_command to define {ESC} X
command, A-66

fi l l_end_token_ inser t_ le f t and
fil l__end_token_insert_pfx to
wrap to fill column and insert
command characters, A-70

help_char {CTRL-_} to invoke
explain command, 1-2, A-89

ignorejprefix to abort part ial ly
completed command sequence,
A-91

information commands, 9-1
ld to do PRIMDS LD command, A-100
numeric_argument to get numeric

argument to defcom command,
5-2, 5-4, A-120

primos_command {CTRL-X} {CTRL-E}
to execute PRIMDS coinmand,
A-128

primos_external to execute
PRIMDS command with phantcm
job, A-129

X-13 Second Edition

EMACS EXTENSION WRITING GUIDE

COMMAND (Continued)
primos_external_como to execute

PRIMDS coinmand with como
output, A-129

primos_internal_quiet to execute
PRIMDS command overwriting
screen, A-130

primos_internal_screen to
execute PRIMDS command, A-130

recursive factorial command and
function, 5-33

reexecute to reexecute last
command, A-139

reject to print "Invalid
command:" in minibuffer, A-140

set_commanc_abort_flag to abort
command, A-155

set_mode_key to bind keypath to
command, 8-4, A-158

sui_primos_command to execute
PRIMDS coinmand in SUI mode,
A-170

withL_commanc_abort_handler to
execute PEEL code with a
command abort handler for
errors, A-190

COMMENT
lisp_comment to move cursor to

LISP mode comment column and
insert semicolon, A-102

OOMD
primos_external__como to execute

FRIMDS command with como
output, A-129

COMPARE
dispatch to compare text to

right of cursor with string,
4-1, 4-11, A-57

if_at to compare text to right
of cursor with string, 4-6,
A-90

lookedjat to compare text to
left of cursor with string,
A-106

looking_at to compare text to
right of cursor with string,
4-6, A-107

select to evaluate and compare
value to determine action,
4-1, 4-9, A-152

COMPILE
dump_file to compile PEEL source

to fasdump, 2-12, A-61
fasdump to compile and dump

source into fasload file, A-67
pi to compile and execute PEEL

source code, 2-7, 3-5, 5-2,
A-124

pljninibuffer {ESC} {ESC} to
type an expression to be
compiled and executed, 3-4,
5-2, A-124

COMPLETE
ignorejprefix to abort part ial ly

completed command sequence,
A-91

COMPUTE
length to compute number of

elements in a list, 3-25
modulo to compute remainder in

integer division, 3-16, A-114

CONCATENATE
catenate to concatenate strings,

7-14, A-37

CONDITION
buffer conditions and tests, 4-6

CONDITIONAL
if for conditional program

execution, 4-1, 4-5, A-90

CONS
cons to add item to list, 3-28,

A-41

CONSTRUCT
*_list to construct a list, A-6

ODNTAIN
string variables containing

text, 7-13

CONTENTS
fsymeval to get contents of the

function cell of an atom, A-81
view_kill__ring {CTRL-X} {CIEL-Z}

K to view contents of kill
buffers, 7-12, A-185

Second Edition X-14

INDEX

CONTROL
control characters in keypaths,

2-10
setjiscroll to set hcol to

control horizontal scrolling,
A-156

CONVENTION
file name conventions with .EM

and .EFASL suffixes, 2-13
keypath conventions, 2-9

CONVERT
char_to_string to convert

character to string, 6-5
convert_to_base to convert

integer to numeric base, A-42
Ctol to convert character to

integer, 6-5, A-12
downcase to convert upper case

letters to lower case, 7-14,
7-16, A-60

integer_to_string to convert
integer to string, 6-5, A-97

ItoC to convert integer to
character, 6-5, A-12

ItoP to convert integer to Prime
character with high-order bit,
6-5, A-13

Ptol to convert Prime character
with high-order bit to
integer, 6-6, A-13

string_to_integer to convert
string to integer, 6-5, A-168

upcase to convert string to
upper case, 7-14, A-181

uppercase_region {CTRL-X}
{CTRL-U} to convert letters in
region to upper case, A-181

uppercase_word {ESC} U to
convert words to upper case,
A-182

00NVERT_TABS
convert_tabs to set tab stops,

A-41

CDNVERT_TO_J3ASE
convert_to_base to convert

integer to numeric base, A-42

COPY
copyjarray to copy arrays, A-43
copy_cursor to copy a cursor,

7-9, A-43
copy_region {ESC} W to copy

region into kill ring, 7-7,
A-44

CDPYJVRRAY
copy_array to copy arrays, A-43

CDPY_CURSOR
copy_cursor to copy a cursor,

7-9, A-43

COPYJREGION
copy_region {ESC} W to copy

region into kill ring, 7-7,
A-44

COUNT
Strepeat for defcom iteration

count, A-5

CPU
cpu_time to get cpu time, A-44

CPUJTIME
cpu_time to get cpu time, A-44

CREATE
creating macro with {CTRL-X} (

and {CTRL-X}), 2-2
creating, transforming, binding

macros extensions, 2-1
fill_off to set fill mode off in

creating macros, 2-3
make_array to create an array,

3-18, 3-21, 4-4, A-109
make_cursor to create a cursor,

A-109

â EATELTEXT_SAVE_J3UFEER$
create_text_save_buffer$ for

circular list of buffers, A-45

CRET_]NDENT_j*EI_ATTVE
cret_indent_relative {CTRL-X}

{RETURN} to insert newline and
indent, A-45

X-15 Second Edition

EMACS EXTENSION WRITING GUIDE

CTOI
Ctol to convert character to

integer, 6-5, A-12

CTRL-@
mark {CTRL-@} to set or pop a

mark, 7-7, A-109

CTRL-A
begin_line {CTRL-A} to move

cursor backward to beginning
of line, 7-5, A-31

CIRL-B
back_char {CTRL-B} to move

cursor backward by characters,
7-2, A-22

CTRL-D
delete_char {CTRL-D} to delete

characters, 7-2, A-54

CTRL-F
forwardjchar {CTRL-F} to move

cursor forward by characters,
7-2, A-74

CIRL-G
abort_command {CTRL-G} to abort

command, A-14
ring_the_bell type send bell

{CTRL-G} on terminal, A-145

CTRL-H
rubout_char {C~RL-H} {backspace}

{delete} to delete character,
7-2, A-145

CTRL-I
tab {CTRL-I} to move cursor to

the next, 7-2, A-171

CTRL-L
refresh {CTRL-L} to repaint

display screen, A-139

CTRL-N
next_line (jcommand) {CIRL-N} to

move cursor to next line, 7-4,
A-117

CTRL-0
oper_line {CTRL-O} to insert

newline at cursor, 7-5, A-121

CTRL-Q
quote_command {CTRL-Q} to read

typed character literally,
A-137

CTRL-R
reverse_search (_command)

{CTRL-R} to search backward,
A-144

CTRL-S
f orwarc_search (_command)

{CIRL-S} to search forward,
A-78

ORL-T
twiddle {CTRL-T} to reverse

character positions, 7-2, A-179

CERL-V
next_page {CTRL-V} to move

window forward a group of
lines, A-ll8

CTRL-X
appencLto_buf {CTRL-X} A to

append region to buffer, 7-7,
A-16

append_to_file {CTRL-X} {CTRL-Z}
A to append region to file,
7-7, A-17

backwardjclause(f) {CTRL-X}
{CTRL-Z} {CIRL-A} to move
cursor backward by clauses,
7-6, A-25

backwarq_kil]_clause {CTRL-X}
{CTRL-Z} {CTRL-H} to kill text
backward by clauses, 7-6, A-26

backwara_kill__Line {CTRL-X}
{CTRL-K} to kill text backward
by lines, A-27

backwara__kill_sentence {CERL-X}
{CTRL-H} to kill text backward
by sentences, 7-6, A-27

backwarcLpara {CTRL-X} [to move
cursor backward by paragraphs,
5-11, A-28

Second Edition X-16

INDEX

CTRL-X (Continued)
center_line {CTRL-X} {CTRL-Z} X

to center lines of text, 5-17,
A-38

collectjnacro {CTRL-X} (to
collect keystrokes for macro,
2-2, A-40

creating macro with {CTRL-X} (
and {CTRL-X}), 2-2

cret_indent_relative {CTRL-X}
{RETURN} to insert newline and
indent, A-45

deleteJolanKJLines {CTRL-X}
{CIRL-O} to delete blank
lines, A-53

exchangejnark {CTRL-X} {CTRL-X}
to exchange mark and point,
A-65

executejnacro {CTRL-X} E to
execute macro, 2-3, A-65

finojfile {CTRL-X} {CTRL-F} to
find and open a file, 2-4, A-72

finishjmacro {CTRL-X}) to end
collect keystrokes for macro,
2-2, A-73

forwardjclause(f) {CTRL-X}
{CTRL-Z} {CTRL-E} to move
cursor forward by clauses,
7-6, A-74

forward_kill_clause {CTRL-X}
{CTRL-Z} {CTRL-K} to kill text
forward by clauses, 7-6, A-76

get_filename {CTRL-X} {CTRL-Z}
{CTRL-F} to get file name, A-84

insertjouf {CTRL-X} {CTRL-Z} I
to insert text buffer, A-95

insert_file {CTRL-X} I to insert
file into buffer, A-95

list Jouf fers {CTRI_X} {CTRL-B}
to list text buffers, A-103

lowercase_region {CTRL-X}
{CTRL-L} to change letters in
region to lower case, A-107

marKJoottcm {CTRL-X} {CTRL-Z} >
to mark bottom of buffer, A-110

mark_top {CTRL-X} {CTRL-Z} < to
mark top of buffer, A-lll

marK_whole {CTRL-X} H to mark
end of buffer and move cursor
to beginning, A-lll

mod_one_window {CTRL-X} 1 to
change multiwindow display to
one window, A-ll3

CTRL-X (Continued)
moc_split_window {CTRL-X} 2 to

restore two window display,
A-113

mo6__write_file {CTRL-X} {CTRL-^W}
to write buffer to file, A-114

otherjwindow {CTRL-X} C to
switch cursor to other window,
A-122

prepenajtojouf {CTRL-X} P to
prepend region to beginning of
buffer, 7-7, A-125

prepend_to_file {CTRL-X}
{CTRL-Z} P to prepend region
to beginning of file, 7-7,
A-126

primos_<x>mmand {CTRL-X} {CTRL-E}
to execute PRIMDS command,
A-128

quit {CTRL-X} {CTRL-C} to return
to EMACS, A-136

repaint {CTRL-X} R to move
cursor to window line, A-141

save_file {CTRL-X} {CTRL-S}
{CTRL-X} S to save buffer in
file, A-147

select_anyjwindow {CTRL-X} 4 to
cycle through windows, A-153

selectjouf {CTRL-X} B to change
buffers, 2-4, A-153

set_rightjnargin {CTRL-X} F to
set right margin, 5-10, A-159

split_window {CTRL-X} 2 to split
window into two, A-165

split_window_stay {CTRL-X} 3 to
split window into two, A-166

tell_position {CTRL-X} = to
display buffer information,
A-173

toggle_redisp {CTRL-X} {CTRL-T}
to toggle redisplay mode, A-17 5

uppercase_region {CTRL-X}
{CTRL-U} to convert letters in
region to upper case, A-181

view_kill__ring {CTRL-X} {CTRL-Z}
K to view contents of kill
buffers, 7-12, A-185

viewjlines {CTRL-X} {CTRL-Z}
{CTRL-V} to update screen on
slow terminal, A-185

yanK_kill_text {CTRL-X} {CTRL-Z}
{CTRL-Y} to insert
view_kill_ring text, 7-13,
A-192

X-17 Second Edition

EMACS EXTENSION WRITING GUIDE

CTRL-Y
yanK_region {CTRL-Y} to insert

killed region, A-193

CTRL-Z
prev_Jine (_command) {CTRL-Z} to

move cursor to previous line,
7-4, A-127

CTRL-_
apropos {CTRL-_} A help facility

to retrieve list of commands,
1-2, 5-3, A-18

describe {CTRL-_} D to get EMACS
command information, 1-2, A-57

explain {CTRL-_} C help to list
what keystroke does, 1-2

helpjchar {CTRL-_} to invoke
explain command, 1-2, A-89

CURRENT
cursor_info to get information

about current cursor, A-48
cursor_on_current_line_p to test

if cursor is on current line,
A-49

curjipos to get current
horizontal position of cursor,
A-46

line_is_blank to test current
line blank, 4-6, A-101

linejiumber to get current line
number, A-101

looking_at_char to test
character at current cursor,
A-107

telljnodes to display current
modes, A-172

OJRRENT_CHARACTER
current_character to get

character at cursor, 7-2, A-46

OJRRENT_CURS0R
current_cursor variable, 7-9,

A-46

OJRRENTJHANDLER
current Jiandler to get string

for current handler, A-47

CURRENTJjINE
current_line to get string with

current line, 7-5, A-47

ojrrentjmajoiu™dow
currentjnajor_window to get

current major window, A-47

CURSOR
backwardjclause(f) {CTRL-X}

{CTRL-Z} {CTRL-A} to move
cursor backward by clauses,
7-6, A-25

backwardjpara {CTRL-X} [to move
cursor backward by paragraphs,
5-11, A-28

backwarc_sentence (f) {ESC} A to
move cursor backward by
sentences, 7-6, A-28

bacK_char {CTRL-B} to move
cursor backward by characters,
7-2, A-22

bacKjpage {ESC} V to move cursor
backward by pages, A-22

bacK_tab to move cursor backward
by tabs, A-23

bacK_tojionwhite {ESC} M to move
cursor backward to nonwhite
space character, A-23

back_word {ESC} B to move cursor
backward by words, 7-4, A-24

beginning_of_buffer_p to test if
cursor at beginning of buffer,
4-6, A-31

beginning_of_linejp to test if
cursor at beginning of line,
4-6, 7-5, A-32

begin_line {CTRL-A} to move
cursor backward to beginning
of line, 7-5, A-31

copy_cursor to copy a cursor,
7-9, A-43

current_character to get
character at cursor, 7-2, A-46

current_cursor variable, 7-9,
A-46

cursor data type, 5-27, A-48
cursor entity, 7-7
cursor_info to get information

about current cursor, A-48
cursor_on_current_line_p to test

if cursor is on current line,
A-49

Second Edition X-18

INDEX

CURSOR (Continued)
cursor_same__line_p to test

cursors if on the same line,
A-49

curjipos to get current
horizontal position of cursor,
A-46

delete_point_cursor to delete
text between point and cursor,
7-12, A-54

dispatch to compare text to
right of cursor with string,
4-1, 4-11, A-57

end_line to move cursor to end
of line, 7-5, A-61

enojofjoufferj? to test if
cursor at end of buffer, 4-6,
A-62

end_of__line_p to test if, cursor
at end of line, 4-6, 7-5, A-62

first_line_p to test if cursor
at first line of buffer, 4-6,
7-5, A-73

forwardjchar {CTRL-F} to move
cursor forward by characters,
7-2, A-74

forwardjclause(f) {CTRL-X}
{CTRL-Z} {CTRL-E} to move
cursor forward by clauses,
7-6, A-74

forwardjpara to move cursor
forward by paragraphs, A-77

forwarajsentence(f) {ESC} E to
move cursor forward by
sentences, 7-6, A-79

forwardjword {ESC} F to move
cursor forward by words, A-80

get_cursor to get list of all
cursor__info cursor information
values, A-83

goto_line to move cursor to line
of buffer, 7-5, A-87

go_to_buffer to move cursor to
buffer, A-85

go_to_cursor to move cursor,
7-9, A-86

go_to__hpos to move cursor to
horizontal position, A-86

go_to_window to move cursor to
buffer of window, A-86

if_at to compare text to right
of cursor with string, 4-6,
A-90

CURSOR (Continued)
insert to insert string at

cursor, A-94
last_line_p to test if cursor at

last line of buffer, 4-6, 7-5,
A-99

lisp_comment to move cursor to
LISP mode cxsnment column and
insert semicolon, A-102

lookedjat to compare text to
left of cursor with string,
A-106

looking_at to compare text to
right of cursor with string,
4-6, A-107

lookingjat_char to test
character at current cursor,
A-107

make_cursor to create a cursor,
A-109

marKjpara {ESC} H to mark end of
paragraph and move cursor to
beginning, A-lll

markjwhole {CTRL-X} H to mark
end of buffer and move cursor
to beginning, A-lll

moveJ>ottom {ESC} > to move
cursor to bottom of buffer,
A-115

move_top {ESC} < to move cursor
to top of buffer, A-116

next_line (_command) {CTRL-N} to
move cursor to next line, 7-4,
A-117

open_line {CIRL-O} to insert
newline at cursor, 7-5, A-121

other_window {CTRL-X} C to
switch cursor to other window,
A-122

point_cursor_to_string to get
text between cursors, 7-11,
A-125

prev_line(_command) {CTRL-Z} to
move cursor to previous line,
7-4, A-127

range_to_string to get string
between two cursors, 7-12,
A-137

read to get PEEL form at cursor,
A-13 8

repaint {CTRL-X} R to move
cursor to window line, A-141

X-19 Second Edition

EMACS EXTENSION WRITING GUIDE

CURSOR (Continued)
samejouf ferjp to test cursors in

same text buffer, A-146
save_excursion to save cursor

and modes and execute
arguments, 7-10, A-147

savejposition to save cursor and
modes and execute arguments,
A-148

skipjoack_over_white to move
cursor backward over white
space characters, 7-2, A-161

skipjoack_to_white to move
cursor backward to white space
character, 7-2, A-162

skipjoverjwhite to move cursor
forward over white space
characters, 7-2, A-162

skip_to_white to move cursor
forward to white space
character, 7-2, A-163

tab {CTRL-I} to move cursor to
the next, 7-2, A-171

terpri to insert newline at
cursor, A-174

trim_date or trim_dt to insert
date at cursor position, A-177

type_tab to move cursor forward
by tab stops, 7-2, A-179

using_cursor to execute
statements and reset cursor,
A-182

with_cursor to execute PEEL code
and reset cursor, 7-11, 7-8,
A-190

CURSOR_INF0
cursor_info to get information

about current cursor, A-48
get_cursor to get list of all

cursor_info cursor information
values, A-83

OJRSOI_a!l_a]RRENTJJINELP
cursor_on_current_line_p to test

if cursor is on current line,
A-49

O)RS0I_SAME__LINE__P
cursor_same_line_p to test

cursors if on the same line,
A-49

CURJEOS
curjipos to get current

horizontal position of cursor,
A-46

CYCLE
nextjouf to cycle to next text

buffer, A-116
prevjouf {ESC} P to cycle to

previous text buffer, A-126
select_any_window {CTRL-X} 4 to

cycle through windows, A-153

DATA
"any" data type, 5-27, A-16
-returns for data type returned

by defun function, 5-19, 5-22,
5-24, A-6

array data type, 5-26, A-19
array_type for data type of

array, 3-24, A-19
atom data type, 3-12, 5-26
atoms with integer data type, 3-2
Boolean data type, A-32
boolean data type, 5-26
character data type, 5-26, A-39
charp to test character data

type, A-39
cursor data type, 5-27, A-48
data types, 3-12, A-49
dispatch_table data type, 5-27
function data type, A-82
handler data type, A-87
integer data type, 3-12, 5-26,

A-97
list data type, 5-26
string data type, 3-12, 5-26,

A-167
typef to get data type of

argument, A-180
window data type, A-188

DATE
date to insert date into text

buffer, A-49
dt to insert date and time into

text buffer, A-60
europe_dt to insert date and

time in European format into
text buffer, A-63

sort_dt to insert date into
buffer in sortable format,
A-164

Second Edition X-20

INDEX

DATE (Continued)
trim_date or trin_dt to insert

date at cursor position, A-177

DEBUG
debugging PEEL programs with

{ESC} {ESC} and {ESC} X, t-7

DECIMAI__REP
decimal_rep variant of

integer_to_str ing, A-50

DECOMPOSE
decompose to rearrange a list

into a pattern, A-50

DECREMENT
1- to decrement argument, 3-15,

A-10

DEEAULT
-default for default value of

defcom numeric argument, 5-5,
5-6, 5-7

default_tabs to restore default
tab stops, A-52

filejiame to get buffer default
file name, A-68

reset_tabs to set tab stops to
default values, A-143

DEFAULT_TABS
default_tabs to restore default

tab stops, A-52

DEFCOM
Starguments to start argument

definitions of defcom, 5-6,
5-7, 5-9, A-3

Stcharacter_argument with defcom
for keystroke passing, 5-9, A-3

-default for default value of
defcom numeric argument, 5-5,
5-6, 5-7

-documentation to insert
documentation into defcom,
5-3, 5-8, A-3

Stignore to ignore defcom numeric
arguments, A-4

-integer for defcom integer
arguments, 5-6, A-4

DEPGOM (Continued)
Stnumeric_arg for defcom numeric

arguments, 5-29, 5-4, 5-5,
5-6, 5-9, A-4

Stpass for defcom numeric
argument local variable, 5-29,
5-5, A-5

Stpref ix for defcom invocation
character insertion, A-5

sprompt for defcom argument
prompting, 5-6, 5-7, A-5

Strepeat for defcom iteration
count, A-5

argument handling with defcom,
5-3

combining defcom commands with
defun functions, 5-24

defcom to define a command, 2-4,
5-2, 5-8, A-52

numeric_argument to get numeric
argument to defcom command,
5-2, 5-4, A-120

DEFINE
defcom to define a command, 2-4,

5-2, 5-8, A-52
defun to define a function,

5-11, 5-12, 5-22, A-52
extend_command to define {ESC} X

command, A-66

DEFINITION
Starguments to start argument

definitions of defcom, 5-6,
5-7, 5-9, A-3

DEEtIN
Seval to evaluate defun

arguments, 5-24, A-4
-local for defun local

variables, 5-17, 5-24, 5-29,
A-4

Smacro for defun list return, A-4
Stoptional for defun arguments,

5-15, 5-16, 5-24, A-4
Stquote for binding of defun

arguments, 5-24, A-5
Strest to put defun arguments

into a list, 5-24, A-5
-returns for data type returned

by defun function, 5-19, 5-22,
5-24, A-6

X-21 Second Edition

EMACS EXTENSION WRITING GUIDE ^1

DEFUN (Continued)
Ststring for defun string

argument, A-6
Stsymbol for defun symbol

argument, A-6
combining defcom commands with

defun functions, 5-24
defun to define a function,

5-11, 5-12, 5-22, A-52
defun with one argument, 5-14
defun with several arguments,

5-15
defun without arguments, 5-13

DEFJVUTO
def_auto to make a function

available for automatic
loading, A-51

DELETE
deleteJolank_lines {CTRL-X}

{CTRL-O} to delete blank
lines, A-53

deletejouffer to delete buffer,
A-53

delete_char {CTRL-D} to delete
characters, 7-2, A-54

delete_point_cursor to delete
text between point and cursor,
7-12, A-54

delete_region to delete region,
7-7, A-55

delete_white_left and
delete_white_right and
delete_white_sides to delete
white space, 7-2, A-55

delete_word to delete words,
7-4, A-56

file_operation to delete a file,
A-69

kill__line to delete to end of
line, 7-5, A-98

killjregion to delete text in
region, 7-7, A-98

kill_rest_of Jouffer to delete
text to end of buffer, A-99

leave_one_white {ESC} {SPACE} to
delete extra white space
characters, A-100

overlayjrubout to delete a
character in overlay mode,
A-123

DELETE (Continued)
ruboutjchar {CTRL-H} {backspace}

{delete} to delete character,
7-2, A-145

white_delete {ESC} \ to delete
white space around point, A-187

IMiEri~_BLiMI_LINES
delete_blanK_lines {CTRL-X}

{CTRL-O} to delete blank
lines, A-53

DELETELBUFFER
deletejouffer to delete buffer,

A-53

DELETEJCHAR
delete_char {CTRL-D} to delete

characters, 7-2, A-54

DELETELP0INT_CURSOR
delete_point_cursor to delete

text between point and cursor,
7-12, A-54

DELETELREGION
deletejregion to delete region,

7-7, A-55

DELETEJWHITELJiEET
delete_white_left and

delete_white_right and
deletejwhitejsides to delete
white space, 7-2, A-55

DELETTELWHITEURIGHT
delete_white_left and

delete_white_right and
delete_white_sides to delete
white space, 7-2, A-55

DELETELWHITEL3IDES
delete_white_left and

deletejwhite_right and
deletejwhitejsides to delete
white space, 7-2, A-55

DELETEJWDRD
delete_word to delete words,

7-4, A-56

Second Edition X-22

INEEX

DESCRIBE
describe {CTRL-_} D to get EMACS

command information, 1-2, A-57

DETERMINE
select to evaluate and compare

value to determine action,
4-1, 4-9, A-152

DIMENSION
2d to test two-dimensional mode,

A-10
2doff to turn off

two-dimensional mode, A-ll
2don to turn on two-dimensional

mode, A-ll
array_dimension for number of

dimensions in an array, 3-24,
A-19

DIRECTORY
list_dir to list directory

information, A-103
tld to list file directory in

SUI mode, A-175
vld for verbose directory

listing in SUI mode, A-186

DISABLE
suppress_redisplay to enable or

disable redisplay, A-170

DISPATCH
dispatch to compare text to

right of cursor with string,
4-1, 4-11, A-57

dispatch_info for information on
mode or dispatch table, 9-4,
A-58

finajmode to get dispatch table
for mode, A-73

modes and dispatch tables, 8-1,
8-2

DISPATOL.INF0
dispatch_info for information on

mode or dispatch table, 9-4,
A-58

DISPATOL-TABLE
dispatch__table data type, 5-27

DISPLAY
errorjnessage to display error

message in minibuffer, A-63
infojnessage to display

information message in
minibuffer, 6-2, A-94

local_jdisplay_generator to
display line in printout mode,
6-6, A-106

modjonejwindow {CTRL-X} 1 to
change multiwindow display to
one window, A-ll3

moojsplitjwindow {CTRL-X} 2 to
restore two window display,
A-113

onejwindow to change multiwindow
display to one window, A-121

prinl and print to display or
insert value, 3-6, 6-6, A-131

refresh {CTRL-L} to repaint
display screen, A-139

show_JLib_alc$ to display shared
EMACS library segments, A-161

tell_leftjnargin to display left
margin position, A-172

telljnodes to display current
modes, A-172

telljposition {CTRL-X} = to
display buffer information,
A-173

tell_right_margin to display
right margin position, A-173

DISPLAY_JRRDI_N0ABORT
display_error_jioabort variant of

errorjnessage, A-59
DIVISION

/ for division, 3-16, A-9
modulo to compute remainder in

integer division, 3-16, A-114

DOC
Sdoc abbreviation for

sdocumentation, 5-3, 5-8, A-3
IXXXTMENTATION

Sdoc abbreviation for
Sdocumentation, 5-3, 5-8, A-3

Sdocumentation to insert
documentation into defcom,
5-3, 5-8, A-3

X-23 Second Edition

EMACS EXTENSION WRITING GUIDE

DCWNCASE
downcase to convert upper case

letters to lower case, 7-14,
7-16, A-60

DO__FOREVER
do_forever to perform infinite

loop, 4-1, 4-2, 4-3, A-59
stop_doing to stop execution of

do_forever or do_n_times, 4-3,
A-167

DOJ_TIMES
doj_times to execute loop for n

iterations, 2-4, 4-1, 4-2, A-60
stop_doing to stop execution of

doJEorever or do_n_times, 4-3,
A-167

DT
dt to insert date and time into

text buffer, A-60

DUMP
fasdump to compile and dump

source into fasload file, A-67

DUMP_FILE
dump_file to compile PEEL source

to fasdump, 2-12, A-61

EFASL
fast load fasload EFASL files,

2-12
file name conventions with .EM

and .EFASL suffixes, 2-13

EFFECT
effect and side-effect, 3-9

ELEMENT
aref to return value of array

element, 3-21, A-18
aset to set array element, 3-19,

3-22, A-19
length to compute number of

elements in a list, 3-25
reverse to reverse the elements

in a list, 3-26

ELSE
"else" alternative to "if", 4-1,

4-5, A-61

EM
file name conventions with .EM

and .EFASL suffixes, 2-13

EMACS
describe {CTRL-_} D to get EMACS

command information, 1-2, A-57
EMACS PEEL environment, 5-1
insert_version to get EMACS

version number, A-96
quit {CTRL-X} {CTRL-C} to return

to EMACS, A-136
setjnode to set EMACS buffer

mode, A-157
share_library$ to load fasload

file at EMACS initialization,
A-161

show__lib_alc$ to display shared
EMACS library segments, A-161

EMPTY
emptyjoufferjp to test buffer

empty, 4-6, A-61

EMITYJBUFFEI__P
emptyjxifferjp to test buffer

empty, 4-6, A-61

ENABLE
suppressjredisplay to enable or

disable redisplay, A-170

END
endJLine to move cursor to end

of line, 7-5, A-61
endjofjoufferjp to test if

cursor at end of buffer, 4-6,
A-62

enaJof__line_p to test if cursor
at end of line, 4-6, 7-5, A-62

finishjnacro {CTRL-X}) to end
collect keystrokes for macro,
2-2, A-73

kill_line to delete to end of
line, 7-5, A-98

kill_rest_ofJouffer to delete
text to end of buffer, A-99

Second Edition X-24

INDEX

END (Continued)
marK_endJof_word {ESC} @ to mark

end of word, 5-10, A-110
marKjpara {ESC} H to mark end of

paragraph and move cursor to
beg inn ing , A- l l l

marKjwhole {CTRL-X} H to mark
end of buffer and move cursor
to beginning, A-ll l

ENDJ^INE
endjline to move cursor to end

of line, 7-5, A-61

END__OF_BUFFEI_P
endjofjoufferjp to test i f

cursor at end of buffer, 4-6,
A-62

END_OF_LINE_j?
end_of_linejp to test if cursor

at end of line, 4-6, 7-5, A-62
eolp abbreviation of

endJofJLinejp, A-62
ENTIRE

fil l_array to in i t ia l ize an
entire array, 3-20, 3-21, 4-4,
A-69

ENTITY
character entity, 7-2
clause entity, 7-5
cursor entity, 7-7
entit ies: character, whitespace,

word, line, region, buffer,
clause, sentence, paragraph,
7 -1

line entity, 7-4
region entity, 7-6
sentence entity, 7-6
whitespace entity, 7-2
word entity, 7-4

ENVIRCNMENT
EMACS PEEL environment, 5-1

EOLP
eolp abbreviation of

end jo f j l ine jp , A-62

EQ
eq test whether arguments are

equal objects, A-62

EQUAL
<r <~r -r ~=j >r >= relation

operators, 4-8, A-ll
eq test whether arguments are

equal objects, A-62

ERROR
errorjnessage to display error

message in minibuffer, A-63
scan_errors to scan buffer for

language errors, A-148
with_command_abortJiandler to

execute PEEL code with a
command abort handler for
errors, A-190

ERRORJIESSAGE
display_errorjioabort variant of

errorjnessage, A-59
errorjnessage to display error

message in minibuffer, A-63

ESC-%
query__replace {ESC} % to replace

text strings with query, A-135

ESC-<
move_top {ESC} < to move cursor

to top of buffer, A-116

ESC->
movejoottom {ESC} > to move

cursor to bottom of buffer,
A-115

ESC-?
explair_key {ESC} ? to get

information on keypath, A-66

ESC-@
mark_end_of_word {ESC} @ to mark

end of word, 5-10, A-110

ESC-A
backwardjsentence(f) {ESC} A to

move cursor backward by
sentences, 7-6, A-28

X-25 Second Edition

EMACS EXTENSION WRITING GUIDE

ESC-B
backjword {ESC} B to move cursor

backward by words, 7-4, A-24

ESC-BACKSPACE
rubout_word {ESC} {CTRL-H} {ESC}

{backspace} {ESC} {delete} to
delete word, 7-4, A-146

ESC-CTRL-B
balbak {ESC} {CTRL-B} to match

parentheses backward in LISP
mode, A-30

ESC-CTRL-F
balfor {ESC} {CTRL-F} to match

parentheses forward in LISP
mode, A-30

ESC-CTRL-H
rubout_word {ESC} {CTRL-H} {ESC}

{backspace} {ESC} {delete} to
delete word, 7-4, A-146

ESC-CTRL-I
indent_to_fill_prefix {ESC}

{CTRL-I} to indent line to
left margin, A-92

ESC-CTRL-0
split_line {ESC} {CTRL-O} splits

line preserving horizontal
position, A-165

ESC-CTRL-Y
yankjninibuffer {ESC} {CTRL-Y}

to insert minibuffer response,
A-192

ESC-DELETE
ruboutjword {ESC} {CTRL-H} {ESC}

{backspace} {ESC} {delete} to
delete word, 7-4, A-146

ESC-E
forwardjsentence(f) {ESC} E to

move cursor forward by
sentences, 7-6, A-79

ESC-ESC
debugging PEEL programs with

{ESC} {ESC} and {ESC} X, 6-7

ESC-ESC (Continued)
pljninibuffer {ESC} {ESC} to

type an expression to be
compiled and executed, 3-4,
5-2, A-124

ESC-F
forwardjword {ESC} F to move

cursor forward by words, A-80

ESC-H
marKjpara {ESC} H to mark end of

paragraph and move cursor to
beginning, A-lll

ESC-K
forwardJkill_sentence {ESC} K to

kill text forward by
sentences, 7-6, A-76

ESC-L
lowercase_word {ESC} L to change

letters in word to lower case,
A-108

ESC-M
back_to_nonwhite {ESC} M to move

cursor backward to nonwhite
space character, A-23

ESC-P
prevjouf {ESC} P to cycle to

previous text buffer, A-126

ESC-Q
filljpara {ESC} Q to fill and

adjust a paragraph, A-71

ESC-T
transposejword {ESC} T to invert

word positions, A-176

ESC-U
uppercasejword {ESC} U to

convert words to upper case,
A-182

ESC-V
bacKjpage {ESC} V to move cursor

backward by pages, A-22

Second Edition X-26

INDEX

ESC-W
copyjregion {ESC} W to copy

region into kill ring, 7-7,
A-44

ESC-X
debugging PEEL programs with

{ESC} {ESC} and {ESC} X, 6-7
extendjcoinmand to define {ESC} X

command, A-66

ESC-Y
yank_replace {ESC} Y to replace

yank_region text, A-193

ESC-\
white_delete {ESC} \ to delete

white space around point, A-187

ESC-~
merge_lines {ESC} ~ to merge

lines by replacing newline
character with space, A-112

ESC-~
unmodify {ESC} ~ to make buffer

as if unmodified, A-180

ESCAPE
escape sequences, A-63

EUROPEAN
europe_dt to insert date and

time in European format into
text buffer, A-63

EUROPEJDT
europe_dt to insert date and

time in European format into
text buffer, A-63

EVAL
Steval to evaluate defun

arguments, 5-24, A-4
eval to evaluate arguments,

3-11, A-64

EVALUATE
&eval to evaluate defun

arguments, 5-24, A-4
eval to evaluate arguments,

3-11, A-64

EVALUATE (Continued)
evaluate_af to evaluate active

FRIMDS function, A-64
progn to evaluate expressions,

A-133
quote ' to return argument

without evaluating it, 3-10,
3-25, A-137

select to evaluate and compare
value to determine action,
4-1, 4-9, A-152

EVALUATELAF
evaluate_af to evaluate active

FRIMDS function, A-64

EVALUATION
evaluation of symbolic

expressions s-expressions,
3-4, 3-6, 3-9

EXCHANGE
exchangejnark {CTRL-X} {CTRL-X}

to exchange mark and point,
A-65

sui_exchange_mark to exchange
mark and point in SUI mode,
A-170

EXCHANGEJMARK
exchangejnark {CTRL-X} {CTRL-X}

to exchange mark and point,
A-65

EXECUTE
autoloadjlib to fasload file and

execute command, A-21
do_n_times to execute loop for n

iterations, 2-4, 4-1, 4-2, A-60
executejnacro {CTRL-X} E to

execute macro, 2-3, A-65
if for conditional program

execution, 4-1, 4-5, A-90
let to bind variables to values

and execute expressions, A-100
loadJp]__source to load and

execute PEEL source file, 2-7,
A-105

pi to compile and execute PEEL
source code, 2-7, 3-5, 5-2,
A-124

X-27 Second Edition

EMACS EXTENSION WRITING GUIDE

EXECUTE (Continued)
pljninibuffer {ESC} {ESC} to

type an expression to be
compiled and executed, 3-4,
5-2, A-124

primos_command {CTRL-X} {CTRL-E}
to execute PRIMDS command,
A-128

primos_external to execute
PRIMDS command with phantom
job, A-129

primos_external_como to execute
PRIMDS command with como
output, A-129

primos_internal_quiet to execute
PRIMDS command overwriting
screen, A-130

primos_internal__screen to
execute PRIMDS command, A-130

reexecute to reexecute last
command, A-139

save_excursion to save cursor
and modes and execute
arguments, 7-10, A-147

savejposition to save cursor and
modes and execute arguments,
A-148

stopjdoing to stop execution of
do_forever or doj_times, 4-3,
A-167

suijprinosjommand to execute
PRIMDS coinmand in SUI mode,
A-170

usingjcursor to execute
statements and reset cursor,
A-182

with__cleanup to execute PEEL
code and perform cleanup, A-189

with_commancl_abortjiandler to
execute PEEL code with a
command abort handler for
errors, A-190

with_cursor to execute PEEL code
and reset cursor, 7-11, 7-8,
A-190

withjio_redisplay to execute
PEEL code suppressing
redisplay, A-190

EXIT
exitjninibuffer to exit from

minibuffer, A-65

EXITJUNIBUFFER
exitjninibuffer to exit from

minibuffer, A-65

EXPAND
expandjmacro to expand macro

into PEEL source, 2-4, A-66

EXPANDJMACRO
expandjnacro to expand macro

into PEEL source, 2-4, A-66

EXPLAIN
explain {CTRL-_} C help to list

what keystroke does, 1-2
help_char {CTRL-_} to invoke

explain command, 1-2, A-89

EXPLAIKLKEY
explair_key {ESC} ? to get

information on keypath, A-66

EXPRESSION
evaluation of symbolic

expressions s-expressions,
3-4, 3-6, 3-9

functions in symbolic
expressions s-expressions, 3-6

functions with expressions as
arguments, 3-8

let to bind variables to values
and execute expressions, A-100

pljninibuffer {ESC} {ESC} to
type an expression to be
compiled and executed, 3-4,
5-2, A-124

progn to evaluate expressions,
A-133

symbolic expressions
s-expressions, 3-4

EXTENDJDMMAND
extencLcommand to define {ESC} X

command, A-66

EXEXXITELMACRO
executejnacro {CTRL-X} E to

execute macro, 2-3, A-65

EXTENSION
-ULIB option to load fasload

extension library, 2-13

Second Edition X-28

INDEX

EXTENSION (Continued)
creating, transforming, binding

macros extensions, 2-1
management of function extension

libraries, 2-13
writing PEEL source program

extensions, 5-1

EXTRA
leave_one_white {ESC} {SPACE} to

delete extra white space
characters, A-100

FACILITY
apropos {CTRL-_} A help facility

to retrieve list of commands,
1-2, 5-3, A-18

FACTORIAL
recursive factorial command and

function, 5-33

FASDUMP
dump_file to compile PEEL source

to fasdump, 2-12, A-61
fasdump to compile and dump

source into fasload file, A-67

FASLOAD
-ULIB option to load fasload

extension library, 2-13
autoloadjlib to fasload file and

execute command, A-21
fasdump to compile and dump

source into fasload file, A-67
fasload to load a fasload file,

A-67
fast load fasload EFASL files,

2-12
loadjcompiled to load fasload

file, 2-12, A-104
loadjlib to load fasload file,

A-105
share_library$ to load fasload

file at EMACS initialization,
A-161

FAST
fast load fasload EFASL files,

2-12

FILE
appendJto_file {CTRL-X} {CTRL-Z}

A to append region to file,
7-7, A-17

autoloadjlib to fasload file and
execute command, A-21

fasdump to compile and dump
source into fasload file, A-67

fasload to load a fasload file,
A-67

fast load fasload EFASL files,
2-12

file name conventions with .EM
and .EFASL suffixes, 2-13

file__info for information about
a file, 9-5, 9-5, A-67, A-67

filejiame to get buffer default
file name, A-68, A-68

file_operation to delete a file,
A-69, A-69

findjfile {CTRL-X} {CTRL-F} to
find and open a file, 2-4, A-72

f oundjf ilejiook turns on mode
for file suffix, A-81

get_filename {CTRL-X} {CTRL-Z}
{CTRL-F} to get file name, A-8

insert_file {CTRL-X} I to insert
file into buffer, A-95

lines_in_file to get number of
lines in a file, A-101

loadjcompiled to load fasload
file, 2-12, A-104

loadjlib to load fasload file,
A-105

loac_pl_source to load and
execute PEEL source file, 2-7,
A-105

modJwrite_jfile {CTRL-X} {CTRL-W}
to write buffer to file, A-ll 4

prependjtojfile {CTRL-X}
{CIRL-Z} P to prepend region
to beginning of file, 7-7,
A-126

readjfile to read a file into
text buffer, A-138

save_all__f iles to save all
modified files, A-147

save_file {CTRL-X} {CTRL-S}
{CTRL-X} S to save buffer in
file, A-147

share_library$ to load fasload
file at EMACS initialization,
A-161

X-29 Second Edition

EMACS EXTENSION WRITING GUIDE

FILE (Continued)
tld to list file directory in

SUI mode, A-175
view_file to view a file in

read-only mode, A-185
write_file to write buffer to

file, A-191

F ILL
fil l_array to in i t ia l ize an

entire array, 3-20, 3-21, 4-4,
A-69

f ill__endJtoken_insert_lef t and
fill_endJtoken_insert_pfx to
wrap to fill column and insert
command characters, A-70

fill_off and fill_on to set fill
mode on or off, A-70

fill__off to set fill mode off in
creating macros, 2-3

fill_para {ESC} Q to fill and
adjust a paragraph, A-71

set_fill_column to fill mode
column, A-155

wrapoff variant of fill_off,
A-191

wrapon variant of fill_on, A-191

FIND
findjfile {CTRL-X} {CTRL-F} to

find and open a file, 2-4, A-72
help functionality for finding

information, 1-1

FIND_BUFFER
findjbuffer to move to beginning

of buffer, A-71

FIRST
car to return first item in

list, 3-28, A-35
cdr to return list with first

item removed, 3-28, A-37
first_line_p to test if cursor

at first line of buffer, 4-6,
7-5, A-73

FIRSTLINEP
first l inep abbreviat ion for

first__line_p, A-73

FIRSTJ^INEJP
first l inep abbreviat ion for

first_JLine_p, A-73
firstJLinej? to test if cursor

at first line of buffer, 4-6,
7-5, A-73

FLUSH
flusl_typeahead to flush

typeahead keyboard input, A-74

FLUSILTYPEAHEAD
flush_typeahead to flush

typeahead keyboard input, A-74

FOREVER
do_forever to perform infinite

loop, 4-1, 4-2, 4-3, A-59

FORM
forming lists, 3-27
forms, 3-17, 3-4
read to get PEEL form at cursor,

A-13 8

FINDJFILE
findjfile {CTRL-X} {CTRL-F} to

find and open a file, 2-4, A-72

FIND_MDDE
f incUnode to get dispatch table

for mode, A-73

FINISHJMACRO
finishjnacro {CTRL-X}) to end

collect keystrokes for macro,
2-2, A-73

EORMAT
europejdt to insert date and

time in European format into
text buffer, A-63

sort_dt to insert date into
buffer in sortable format,
A-164

FORWARD
balfor {ESC} {CTRL-F} to match

parentheses forward in LISP
mode, A-30

forwardjchar {CTRL-F} to move
cursor forward by characters,
7-2, A-74

Second Edition X-30

INDEX

FORWARD (Continued)
forwardjclause (f) {CTRL-X}

{CTRL-Z} {CIRL-E} to move
cursor forward by clauses,
7-6, A-74

forwardJkill_clause {CTRL-X}
{CTRL-Z} {C1RL-K} to kill text
forward by clauses, 7-6, A-76

forwardJkill_sentence {ESC} K to
kill text forward by
sentences, 7-6, A-76

forwardjpara to move cursor
forward by paragraphs, A-77

f orwardjsearch (_command)
{CTRL-S} to search forward,
A-78

forwardjsentence (f) {ESC} E to
move cursor forward by
sentences, 7-6, A-79

forwardjword {ESC} F to move
cursor forward by words, A-80

nextjpage {CTRL-V} to move
window forward a group of
l i nes , A - l l 8

scrol l_other_forward to scrol l
other window forward, A-149

search__fd and search_fdjin_line
to search forward for set of
characters, A-151

skip_over_white to move cursor
forward over white space
characters, 7-2, A-162

skip_to_white to move cursor
forward to white space
character, 7-2, A-163

type_tab to move cursor forward
by tab stops, 7-2, A-179

veri fy_fd and veri fy_jfdj in_l ine
to search forward for
character not in string, A-184

As_forward_search_command
variant of
forward_search_command, A-14

P0UND_FILEJHOOK
foundjfilejiook turns on mode

for file suffix, A-81

FOUR
multiplier to multiply numeric

argument by four, A-116

FREE
allocation and freeing of local

variables, 5-31

FSET
fset to set the function cell of

an atom, A-81

FSYMEVAL
fsymeval to get contents of the

function cell of an atom, A-81

FUNCTION
.returns for data type returned

by defun function, 5-19, 5-22,
5-24, A-6

af to insert active FRIMDS
function result, A-15

apply to a function to list of
arguments, A-17

binding mode functions and
commands, 8-4

combining defcom commands with
defun functions, 5-24

defun to define a function,
5-11, 5-12, 5-22, A-52

def_auto to make a function
available for automatic
loading, A-51

evaluate_af to evaluate active
ERIMDS function, A-64

fset to set the function cell of
an atom, A-81

fsymeval to get contents of the
function cell of an atom, A-81

function data type, A-82
functions in symbolic

expressions s-expressions, 3-6
functions with expressions as

arguments, 3-8
functions with no arguments, 3-7
function_info to get information

about a function, A-82
help functionali ty for finding

information, 1-1
lambda to build function object,

A-99
management of function extension

l ibrar ies, 2-13
recursive factorial command and

function, 5-33

X-31 Second Edition

EMACS EXTENSION WRITING GUIDE

FUNCTION (Continued)
recursive functions, 5-31
restrict_to_sui$ to restrict

functions to SUI mode, A-143
return to terminate PEEL

function, A-144
separation of functions, 5-31
set_key to bind keypath to

function name, 2-11, A-156
setjpermanent_key to bind

keypath to function name,
2-11, 2-8, A-158

FUNCTIOKLINEO
function_info to get information

about a function, A-82

GETTJURSOR
get_cursor to get list of all

cursor_info cursor information
values, A-83

GET_FTLENAME
get_filename {CTRL-X} {CTRL-Z}

{CTRL-F} to get file name, A-84

GETJPNAME
getjpname to get print name of

atom, A-84

GETJEAB
get_tab to restore saved tab

stops, A-85

GLOBAL
global and local variables, 5-28
global variables, 5-28
NL newline character global

variable, A-13
token_chars global variable with

all characters in word, 5-28,
A-175

userjiame global variable with
login name, A-182

whitespace global variable with
white space characters, 5-28,
A-187

GOTO
*catch goto label or on-unit

function, A-7

GOTO (Continued)
*throw goto or on-unit function,

A-8
catch goto label or on-unit

function, A-37
goto_line to move cursor to line

of buffer, 7-5, A-87
go_to_cursor to move cursor,

7-9, A-86
go_to_hpos to move cursor to

horizontal position, A-86
go_to_window to move cursor to

buffer of window, A-86
throw goto or on-unit function,

A-175

GOTOJLINE
goto_line to move cursor to line

of buffer, 7-5, A-87

GO_TO_BUFFER
go_tojouffer to move cursor to

buffer, A-85

GO_TO_CURSOR
go_to_cursor to move cursor,

7-9, A-86

GOjTOJHFOS
go_to_hpos to move cursor to

horizontal position, A-86

GO_TO_WINDCW
go_to_window to move cursor to

buffer of window, A-86

GREATER
<r <=r -t ^-t >r >= relation

operators, 4-8, A-ll

GROUP
nextjpage {CTRL-V} to move

window forward a group of
lines, A-ll8

HANDLER
currentjiandler to get string

for current handler, A-47
handler data type, A-87
handler_info to get or set

information about a handler,
A-87

Second Edition X-32

INDEX

HANDLER (Continued)
with_comniand_abort_handler to

execute PEEL code with a
command abort handler for
errors, A-190

HANDLEF__INFO
handler_info to get or set

information about a handler,
A-87

HANDLING
argument handling with defcom,

5-3

HAVEJINFUTJP
have_input_p to test for pending

keyboard input, A-88

HCOL
hcol to get or set horizontal

column, A-89, A-89
hscroll to set horizontal column

(hcol), A-90
setjiscroll to set hcol to

control hor izontal scrol l ing,
A-156

HELP
apropos {CTRL-_} A help facility

to retrieve list of commands,
1-2, 5-3, A-18

explain {CTRL-_} C help to list
what keystroke does, 1-2

help functionali ty for finding
information, 1-1

wallpaper to insert all help
information into text buffer,
A-187

HELP_CHAR
help_char {CTRL-_} to invoke

explain coinmand, 1-2, A-89

HIGH-ORDER
high_.bit_.off to turn off

high-order bits in string
characters, 6-6, A-89

high_bit_on to turn on
high-order bits in string
characters, 6-6, A-90

HIGH-ORDER (Continued)
ItoP to convert integer to Prime

character with high-order bit,
6-5, A-13

Ptol to convert Prime character
with high-order bit to
integer, 6-6, A-13

HIGH_3ITJDFF
high_bit_off to turn off

high-order bits in string
characters, 6-6, A-89

HIC3L3ITJ0N
highjbitjon to turn on

high-order bits in string
characters, 6-6, A-90

HORIZONTAL
curjipos to get current

horizontal position of cursor,
A-46

go_toJipos to move cursor to
horizontal position, A-86

hcol to get or set horizontal
column, A-89

hscroll to set horizontal column
(hcol), A-90

indent_JLine_toJipos to indent
line to horizontal position,
A-91

indentjrelative to indent l ine
to horizontal position (hpos),
5-24, A-91

setjiscroll to set hcol to
control horizontal scrolling,
A-156

split_line {ESC} {CTRL-O} splits
line preserving horizontal
position, A-165

whitespace_toJipos to insert
white space to horizontal
position, A-187

HPOS
go_to_hpos to move cursor to

horizontal position, A-86
indent__line_to_hpos to indent

line to horizontal position,
A-91

indentjrelative to indent l ine
to horizontal position (hpos),
5-24, A-91

X-33 Second Edition

EMACS EXTENSION WRITING GUIDE

HPOS (Continued)
whitespace_to_hpos to insert

white space to horizontal
position, A-187

HSCROLL
hscroll to set horizontal column

(hcol), A-90

IDENTIFIER
uid to get string with unique

iden t ifier, A-180

IF
"else" alternative to "if", 4-1,

4-5, A-61
at_white_char to test if at

white space character, 4-6,
A-21

beginning_ofJouf ferjp to test if
cursor at beginning of buffer,
4-6, A-31

beginning_of_line_p to test if
cursor at beginning of line,
4-6, 7-5, A-32

cursor_on_current_linejp to test
if cursor is on current line,
A-49

cursor_same_line_p to test
cursors if on the same line,
A-49

endjofJouffer j? to test if
cursor at end of buffer, 4-6,
A-62

endjof_line_p to test if cursor
at end of line, 4-6, 7-5, A-62

firstJLinejp to test if cursor
at first line of buffer, 4-6,
7-5, A-73

if for conditional program
execution, 4-1, 4-5, A-90

last_line_p to test if cursor at
last line of buffer, 4-6, 7-5,
A-99

member to test if item is in
l is t , A-112

numberp to test if argument is a
number, A-120

unmodify {ESC} ~ to make buffer
as if unmodified, A-180

IF__AT
if_at to compare text to right

of cursor with string, 4-6,
A-90

IGNORE
Stignore to ignore defcom numeric

arguments, A-4

IGNORELPREETX
ignorejprefix to abort part ial ly

completed <oommand sequence,
A-91

INCREMENT
1+ to increment argument, 3-15,

A-10

INDENT
cret_indent_relative {CTRL-X}

{RETORN} to insert newline and
indent, A-45

indent_line_toJipos to indent
line to horizontal position,
A-91

indent jrelative to indent line
to horizontal position (hpos),
5-24, A-91

indent_ to_fi l l_prefix {ESC}
{CTRL-I} to indent line to
left margin, A-92

untidy to remove indenting and
justification from paragraph,
A-181

INDEX
index to search for one string

in another, 7-14, 7-15, A-93

INFTNITE
do_forever to perform infinite

loop, 4-1, 4-2, 4-3, A-59

INFORMATION
buffer_info to get buffer

information, 9-1, A-32
cursor_info to get information

about current cursor, A-48
describe {CTRL-_} D to get EMACS

command information, 1-2, A-57
dispatch_info for information on

mode or dispatch table, 9-4,
A-58

Second Edition X-34

INDEX

INFORMATION (Continued)
explain_key {ESC} ? to get

information on keypath, A-66
file_info for information about

a file, 9-5, A-67
function_info to get information

about a function, A-82
get_cursor to get list of all

cursor_info cursor information
values, A-83

handler_info to get or set
information about a handler,
A-87

help functionality for finding
information, 1-1

information commands, 9-1
infojnessage to display

information message in
minibuffer, 6-2, A-94

list_dir to list directory
information, A-103

telljposition {CTRL-X} = to
display buffer information,
A-173

terminal__info to get or set
terminal information, A-173

wallpaper to insert all help
information into text buffer,
A-187

window_info to set or get window
information, 9-6, A-188

INFO_MESSAGE
infojnessage to display

information message in
minibuffer, 6-2, A-94

minibufferjprint variant of
info_message, A-113

INITIALIZE
filX_array to initialize an

entire array, 3-20, 3-21, 4-4,
A-69

init_whitespace to initialize
whitespace, 7-2

share_!ibrary$ to load fasload
file at EMACS initialization,
A-161

INITJjDCAIJDISPLAYS
clear_andjsay variant of

init_local__displays, A-39

INITJ_OCAI__DISPLAYS (Continued)
init__local__displays to clear

screen and start printout
mode, 6-6, A-94

INIT_WHITESPACE
initjwhitespace to initialize

whitespace, 7-2

INFUT
flush_typeahead to flush

typeahead keyboard input, A-74
have_input_p to test for pending

keyboard input, A-88
interactive input and output

i/o, 6-1

INSERT
-documentation to insert

documentation into defcom,
5-3, 5-8, A-3

Spref ix for defcom invocation
character insertion, A-5

af to insert active PRIMDS
function result, A-15

cret_indent_relative {CTRL-X}
{RETURN} to insert newline and
indent, A-45

date to insert date into text
buffer, A-49

dt to insert date and time into
text buffer, A-60

europe_dt to insert date and
time in European format into
text buffer, A-63

fill__endJtoken_insert_left and
fill_endJtoken_insert_pfx to
wrap to fill column and insert
command characters, A-70

insert to insert string at
cursor, A-94

insertjxif {CTRL-X} {CTRL-Z} I
to insert text buffer, A-95

insertjouff variant of
insertjouf, A-95

insertJEile {CTRL-X} I to insert
file into buffer, A-95

insert_tab to insert white space
to tab stop, 7-2, A-96

insert_version to get EMACS
version number, A-96

X-35 Second Edition

EMACS EXTENSION WRITING GUIDE

INSERT (Continued)
lisp_comment to move cursor to

LISP mode comment column and
insert semicolon, A-102

openJLine {CIRL-O} to insert
newline at cursor, 7-5, A-121

prinl and print to display or
insert value, 3-6, 6-6, A-131

self_insert and overlayer to
insert character into buffer,
A-124, A-154

sortjdt to insert date into
buffer in sortable format,
A-164

terpri to insert newline at
cursor, A-174

trim_date or trim_dt to insert
date at cursor position, A-177

wallpaper to insert all help
information into text buffer,
A-187

whitespace_to_hpos to insert
white space to horizontal
position, A-187

wrap to insert newline for word
wrapping, A-190

yanK_kill__text {CTRL-X} {CTRL-Z}
{CTRL-Y} to insert
v iew_ki l l j : ing text , 7-13,
A-192

yanKjninibuffer {ESC} {CTRL-Y}
to insert minibuffer response,
A-192

yanK_region {CTRL-Y} to insert
killed region, A-193

INTEGER
-integer for defcom integer

arguments, 5-6, A-4
atoms with integer data type, 3-2
convert_tojoase to convert

integer to numeric base, A-42
Ctol to convert character to

integer, 6-5, A-12
integer data type, 3-12, 5-26,

A-97
integer_to_string to convert

integer to string, 6-5, A-97
ItoC to convert integer to

character, 6-5, A-12
ItoP to convert integer to Prime

character with high-order bit,
6-5, A-13

INTEGER (Continued)
modulo to compute remainder in

integer division, 3-16, A-114
prompt__for_integer to prompt

user for integer, 6-3, 6-4,
A-133

Ptol to convert Prime character
with high-order bit to
integer, 6-6, A-13

string_to_integer to convert
string to integer, 6-5, A-168

INTEGÊ TCLSTRING
decimal_j:ep variant of

integer_to_string, A-50
integer_to_string to convert

integer to string, 6-5, A-97

INTERACTIVE
interactive input and output

i/o, 6-1

INTERVAL
sleep_for_njnilliseconds to

pause for time interval, A-164
INVALID

reject to print "Invalid
command:" in minibuffer, A-140

INVERT
transpose_word {ESC} T to invert

word positions, A-176

INVOKE
Stpref ix for defcom invocation

character insertion, A-5
help_char {CTRL-_} to invoke

explain command, 1-2, A-89

ITEM
assoc to look up item in

association list, A-20
car to return first item in

list, 3-28, A-35
cdr to return list with first

item removed, 3-28, A-37
cons to add item to list, 3-28,

A-41
member to test if item is in

l is t , A-112

Second Edition X-36

INDEX

ITERATION
Strepeat for defcom iteration

count, A-5
doj_times to execute loop for n

iterations, 2-4, 4-1, 4-2, A-60

ITOC
ItoC to convert integer to

character, 6-5, A-12

ITOP
ItoP to convert integer to Prime

character with high-order bit,
6-5, A-13

JCB
primos_external to execute

PRIMDS command with phantcm
job, A-129

JUSTIFY
unticty to remove indenting and

justification from paragraph,
A-181

KEYBOARD
assure_character to get next

keyboard character, 6-4, A-20
flush_typeahead to flush

typeahead keyboard input, A-74
have_input_p to test for pending

keyboard input, A-88

KEYPATH
control characters in keypaths,

2-10
explain_key {ESC} ? to get

information on keypath, A-66
keypath conventions, 2-9
set_key to bind keypath to

function name, 2-11, A-156
setjnode_key to bind keypath to

command, 8-4, A-158
set_permanent_key to bind

keypath to function name,
2-11, 2-8, A-158

upper and lower case letters in
keypaths, 2-11

KEYSTROKE
&character_argument with defcom

for keystroke passing, 5-9, A-3

KEYSTROKE (Continued)
collectjnacro {CTRL-X} (to

collect keystrokes for macro,
2-2, A-40

explain {CTRL-_} C help to list
what keystroke does, 1-2

finishjnacro {CTRL-X}) to end
collect keystrokes for macro,
2-2, A-73

KILL
backwardjkill__clause {CTRL-X}

{CTRL-Z} {CTRL-H} to kill text
backward by clauses, 7-6, A-26

backwardjkill_line {CTRL-X}
{CTRL-K} to kill text backward
by lines, A-27

backwardjkill_sentence {CTRL-X}
{CTRL-H} to kill text backward
by sentences, 7-6, A-27

copyjregion {ESC} W to copy
region into kill ring, 7-7,
A-44

forward_kill_clause {CTRL-X}
{CTRL-Z} {CIRL-K} to kill text
forward by clauses, 7-6, A-76

forwardJkill_sentence {ESC} K to
kill text forward by
sentences, 7-6, A-76

killJLine to delete to end of
line, 7-5, A-98

kill_region to delete text in
region, 7-7, A-98

kill_rest_of .Jouffer to delete
text to end of buffer, A-99

view_kill__ring {CTRL-X} {CTRL-Z}
K to view contents of kill
buffers, 7-12, A-185

yanK_region {CTRL-Y} to insert
killed region, A-193

LABEL
*catch goto label or on-unit

function, A-7
catch goto label or on-unit

function, A-37

LAMBDA
lambda to build function object,

A-99

X-37 Second Edition

EMACS EXTENSION WRITING GUIDE

LANGUAGE
LISP programming language, 1-4
scan_errors to scan buffer for

language errors, A-148

LAST
lastJLinejp to test if cursor at

last line of buffer, 4-6, 7-5,
A-99

reexecute to reexecute last
command, A-139

LASTLINEP
lastl inep abbreviation for

last_l ine_p, A-99

LASTJLINE_P
lastl inep abbreviation for

last_line_p, A-99
lastJLinejp to test if cursor at

last line of buffer, 4-6, 7-5,
A-99

LD
ld to do PRIMDS LD command, A-100

LEAD
stem_of_line to get leading

portion of line, 7-5, A-166
trim to remove leading and

trailing blanks, 7-2, A-177

LEAVEJONEJWHITE
leave_one_white {ESC} {SPACE} to

delete extra white space
characters, A-100

LEET
indent_to_fill_prefix {ESC}

{CTRL-I} to indent line to
left margin, A-92

lookedjat to compare text to
left of cursor with string,
A-106

set__leftjnargin to set left
margin, A-157

tell__leftjnargin to display left
margin position, A-172

LEGAL
verify to test string for legal

characters, A-183

LENGTH
length to compute number of

elements in a list, 3-25
string_length to get length of

string, A-167

LESS
<t <-r -t *=/ >r >= relation

operators, 4-8, A-ll

LET
let to bind variables to values

and execute expressions, A-100

LETTER
downcase to convert upper case

letters to lower case, 7-14,
7-16, A-60

lowercase_region {CTRL-X}
{CTRL-L} to change letters in
region to lower case, A-107

lowercasejword {ESC} L to change
letters in word to lower case,
A-108

upper and lower case letters in
keypaths, 2-11

uppercase_region {CTRL-X}
{CTRL-U} to convert letters in
region to upper case, A-181

LIBRARY
-ULIB option to load fasload

extension library, 2-13
management of function extension

l ibrar ies, 2-13
show_JLib_alc$ to display shared

EMACS library segments, A-161

LINE
t tells line numbering status,

A-2
toff turns line numbering off,

A-2
ton turns line numbering on, A-2
backwardjkilInline {CTRL-X}

{CTRL-K} to kill text backward
by lines, A-27

beginning_of_linej? to test if
cursor at beginning of line,
4-6, 7-5, A-32

begin_line {CTRL-A} to move
cursor backward to beginning
of line, 7-5, A-31

Second Edition X-38

INDEX

LINE (Continued)
center__line {CIRL-X} {CIRL-Z} X

to center lines of text, 5-17,
A-38

current_JLine to get string with
current line, 7-5, A-47

cursor_or_current_linej? to test
if cursor is on current line,
A-49

cursor_same_line_p to test
cursors if on the same line,
A-49

delete_blanK_lines {CTRL-X}
{CTRL-O} to delete blank
lines, A-53

endJLine to move cursor to end
of line, 7-5, A-61

endjof JLine_p to test if cursor
at end of line, 4-6, 7-5, A-62

entities: character, whitespace,
word, line, region, buffer,
clause, sentence, paragraph,
7-1

first_line_p to test if cursor
at first line of buffer, 4-6,
7-5, A-73

goto_line to move cursor to line
of buffer, 7-5, A-87

indent_line_to_hpos to indent
line to horizontal position,
A-91

indent_relative to indent line
to horizontal position (hpos),
5-24, A-91

indent_to_fill_prefix {ESC}
{CTRL-I} to indent line to
left margin, A-92

kill__Line to delete to end of
line, 7-5, A-98

last_line_p to test if cursor at
last line of buffer, 4-6, 7-5,
A-99

line entity, 7-4
line_is_blank to test current

line blank, 4-6, A-101
line_number to get current line

number, A-101
local_display_generator to

display line in printout mode,
6-6, A-106

merge_lines {ESC} ~ to merge
lines by replacing newline
character with space, A-112

LINE (Continued)
next__line (_command) {CTRL-N} to

move cursor to next line, 7-4,
A-117

nextjpage {CTRL-V} to move
window forward a group of
lines, A-ll8

NL newline character global
variable, A-13

prevJLine (_ccmmand) {CTRL-Z} to
move cursor to previous line,
7-4, A-127

repaint {CTRL-X} R to move
cursor to window line, A-141

rest_of_J.ine to to get string
with rest of line, 7-5, A-143

split_line {ESC} {CTRL-O} splits
line preserving horizontal
position, A-165

stemjof JLine to get leading
portion of line, 7-5, A-166

LISP
balbak {ESC} {CTRL-B} to match

parentheses backward in LISP
mode, A-30

balfor {ESC} {CTRL-F} to match
parentheses forward in LISP
mode, A-30

closejoaren to match parentheses
in LISP mode, A-40

LISP programming language, 1-4
lisp_comment to move cursor to

LISP mode comment column and
insert semicolon, A-102

lispjon and lisp_off to turn
LISP mode on or off, 1-3, 8-2,
A-102

LISPJDMMENT
lisp_comment to move cursor to

LISP mode comment column and
insert semicolon, A-102

LISPJDFF
lisp_on and lisp_off to turn

LISP mode on or off, 1-3, 8-2,
A-102

LISPJDN
lispjon and lisp_off to turn

LISP mode on or off, 1-3, 8-2,
A-102

X-39 Second Edition

EMACS EXTENSION WRITING GUIDE

LIST
Stmacro for defun list return, A-4
Strest to put defun arguments

into a list, 5-24, A-5
*_list to construct a list, A-6
append to lists, 3-27, A-16
apply to a function to list of

arguments, A-17
apropos {CTRL-_} A help facility

to retrieve list of commands,
1-2, 5-3, A-18

assoc to look up item in
association list, A-20

car to return first item in
list, 3-28, A-35

cdr to return list with first
item removed, 3-28, A-37

cons to add item to list, 3-28,
A-41

create_text_save_buffer$ for
circular list of buffers, A-45

decompose to rearrange a list
into a pattern, A-50

explain {CIRL-_} C help to list
what keystroke does, 1-2

forming lists, 3-27
get to get value for tag in

property list (plist), A-83
get_cursor to get list of all

cursor_info cursor information
values, A-83

length to compute number of
elements in a list, 3-25

list data type, 5-26
list to get list of arguments,

3-27, A-103
lists and null lists, 3-3
listjouffers {CTRI_X} {CTRL-B}

to list text buffers, A-103
list_dir to list directory

information, A-103
manipulating lists, 3-25
niember to test if item is in

list, A-112
nested lists, 3-17, 3-4
nthcar to get n'th car of a

list, A-119
null to test for null list, A-119
putprop to assign tag and value

to property list (plist), A-135
remprop to remove tag and value

from property list (plist),
A-141

LIST (Continued)
reverse to reverse the elements

in a list, 3-26
sortJList to sort a list, A-164
sublist to get sublist of list,

A-16 8
tablist_to_array to set tab

stops from list, A-172
tld to list file directory in

SUI mode, A-175

LISTING
vld for verbose directory

listing in SUI mode, A-186
LITERAL

c_uote_command {CTRL-Q} to read
typed character literally,
A-137

LOAD
-ULIB option to load fasload

extension library, 2-13
def_auto to make a function

available for automatic
loading, A-51

fasload to load a fasload file,
A-67

fast load fasload EFASL files,
2-12

loadjcompiled to load fasload
file, 2-12, A-104

loadjlib to load fasload file,
A-105

loadjpackage to load a package,
A-105

load_pl__source to load and
execute PEEL source file, 2-7,
A-105

share_library$ to load fasload
file at EMACS initialization,
A-161

LOCAL
-local for defun local

variables, 5-17, 5-24, 5-29,
A-4

&pass for defcom numeric
argument local variable, 5-29,
5-5, A-5

allocation and freeing of local
variables, 5-31

Second Edition X-40

INDEX

LOCAL (Continued)
global and local variables, 5-28
local variables, 5-16, 5-29

UXALJDISPLAYjGENERATOR
local__display_generator to

display line in printout mode,
6-6, A-106

sayjnore variant of
localjdisplayjgenerator, A-148

LOGIC
logic and looping, 4-1

LOGICAL
"not" for logical negation, 4-8,

A-118
"or" for logical or, 4-8, A-122
and for logical "and", 4-8, A-15

LOGIN
user jiame global variable with

login name, A-182

LOOK
assoc to look up item in

association list, A-20

L0OKED__AT
lookedjat to compare text to

left of cursor with string,
A-106

LOOKINGJVT
looking_at to compare text to

right of cursor with string,
4-6, A-107

LOOKINGJtfJCHAR
looking_at_char to test

character at current cursor,
A-107

LOOP
do_forever to perform infinite

loop, 4-1, 4-2, 4-3, A-59
do_n_times to execute loop for n

iterations, 2-4, 4-1, 4-2, A-60
logic and looping, 4-1
looping with arrays, 4-4

LCWER
case_off and case_on for upper

and lower case in searches,
A-35

case_replace_of f and
case_replace_on for upper and
lower case in replacing, A-36

downcase to convert upper case
letters to lower case, 7-14,
7-16, A-60

lowercasejregion {CTRL-X}
{CTRL-L} to change letters in
region to lower case, A-107

lowercasejword {ESC} L to change
letters in word to lower case,
A-108

upper and lower case letters in
keypaths, 2-11

L0WERO_3ELREGIDN
lowercase_region {CTRL-X}

{CTRL-L} to change letters in
region to lower case, A-107

LCWERCASEJWDRD
lowercase_word {ESC} L to change

letters in word to lower case,
A-108

MACRO
Sanacro for defun list return, A-4
collectjnacro {CTRL-X} (to

collect keystrokes for macro,
2-2, A-40

creating macro with {CTRL-X} (
and {CTRL-X}), 2-2

creating, transforming, binding
macros extensions, 2-1

executejnacro {CTRL-X} E to
execute macro, 2-3, A-65

expandjmacro to expand macro
into PEEL source, 2-4, A-66

filljoff to set fill mode off in
creating macros, 2-3

finishjnacro {CTRL-X}) to end
collect keystrokes for macro,
2-2, A-73

MAJOR
currentjnajor_window to get

current major window, A-47

X-41 Second Edition

EMACS EXTENSION WRITING GUIDE

MAJOR (Continued)
major_window_count to get number

of major windows, A-108

MAJOK_WINDOW_CDUNT
major_window_count to get number

of major windows, A-108

MAKE
def_auto to make a function

available for automatic
loading, A-51

unmodify {ESC} ~ to make buffer
as if unmodified, A-180

MAKEJARRAY
make_array to create an array,

3-18, 3-21, 4-4, A-109

MAKEJCURSOR
make_cursor to create a cursor,

A-109

MANAGE
management of function extension

libraries, 2-13

MANIPULATE
manipulating lists, 3-25

MARGIN
indent_to_fill_prefix {ESC}

{CTRL-I} to indent line to
left margin, A-92

set__leftjnargin to set left
margin, A-157

set_right_margin {CTRL-X} F to
set right margin, 5-10, A-159

tell_leftjnargin to display left
margin position, A-172

telljrightjnargin to display
right margin position, A-173

MARK
exchangejnark {CTRL-X} {CTRL-X}

to exchange mark and point,
A-65

mark {CTRL-@} to set or pop a
mark, 7-7, 7-7, A-109, A-109

marKJottcm {CTRL-X} {CTRL-Z} >
to mark bottom of buffer, A-110

MARK (Continued)
marK_end_ofjword {ESC} @ to mark

end of word, 5-10, A-110
marKjpara {ESC} H to mark end of

paragraph and move cursor to
beginning, A-lll

marKjtop {CTRL-X} {CTRL-Z} < to
mark top of buffer, A-lll

marK_whole {CTRL-X} H to mark
end of buffer and move cursor
to beginning, A-lll

popmark to pop mark off mark
stack, A-125

pushmark to push mark onto mark
stack, A-134

setmark to set mark, A-159
suijexchangejnark to exchange

mark and point in SUI mode,
A-170

MATCH
balbak {ESC} {CTRL-B} to match

parentheses backward in LISP
mode, A-30

balfor {ESC} {CTRL-F} to match
parentheses forward in LISP
mode, A-30

closejparen to match parentheses
in LISP mode, A-40

MEMBER
member to test if item is in

list, A-112

MERGE
mergeJLines {ESC} ~ to merge

lines by replacing newline
character with space, A-112

MERGEJLINES
merge_lines {ESC} * to merge

lines by replacing newline
character with space, A-112

MESSAGE
errorjnessage to display error

message in minibuffer, A-63
infojnessage to display

information message in
minibuffer, 6-2, A-94

minibuffer for prompting and
response messages, 6-2, 6-3

Second Edition X-42

INDEX

MESSAGE (Continued)
primos_smsgl to send PRIMDS

message to user, A-131
sleep_forj_jnilliseconds used

with minibuffer message, 6-2

MINIBUFFER
error_jnessage to display error

message in minibuffer, A-63
exitjninibuffer to exit from

minibuffer, A-65
infojnessage to display

information message in
minibuffer, 6-2, A-94

minibuffer for prompting and
response messages, 6-2, 6-3

reject to print "Invalid
command:" in minibuffer, A-140

sleep_forj_milliseconds used
with minibuffer message, 6-2

yanKjninibuffer {ESC} {CTRL-Y}
to insert minibuffer response,
A-192

MINIBUFFERJPRINr
minibufferjprint variant of

info_message, A-113

MINIBUFFEI_RESPONSE
minibuffer_response variant of

prompt, A-113

MINIBUF_jRESPONSE
minibuf_response variant of

prompt, A-112
MODE

2d to test two-dimensional mode,
A-10

2doff to turn off
two-dimensional mode, A-ll

2don to turn on two-dimensional
mode, A-ll

all_modes_off to turn all modes
off, A-15

balbak {ESC} {CTRL-B} to match
parentheses backward in LISP
mode, A-30

balfor {ESC} {CTRL-F} to match
parentheses forward in LISP
mode, A-30

MDDE (Continued)
binding mode functions and

commands, 8-4
closejparen to match parentheses

in LISP mode, A-40
dispatch_info for information on

mode or dispatch table, 9-4,
A-58

fill-Off and fill_on to set fill
mode on or off, A-70

filljoff to set fill mode off in
creating macros, 2-3

firK_jnode to get dispatch table
for mode, A-73

foundjf ilejiook turns on mode
for file suffix, A-81

init_locaX_displays to clear
screen and start printout
mode, 6-6, A-94

lisp_comment to move cursor to
LISP mode comment column and
insert semicolon, A-102

lisp_on and lisp_off to turn
LISP mode on or off, 1-3, 8-2,
A-102

local__display_generator to
display line in printout mode,
6-6, A-106

modes and dispatch tables, 8-1,
8-2

overlayjoff and overlayjon to
turn overlay mode on or off,
A-123

overlay_rubout to delete a
character in overlay mode,
A-123

restrict_to_sui$ to restrict
functions to SUI mode, A-143

save_excursion to save cursor
and modes and execute
arguments, 7-10, A-147

savejposition to save cursor and
modes and execute arguments,
A-148

set_fill_column to fill mode
column, A-155

set_jnode to set EMACS buffer
mode, A-157

suL_exchangejnark to exchange
mark and point in SUI mode,
A-170

X-43 Second Edition

EMACS EXTENSION WRITING GUIDE

MODE (Continued)
sujjprimos_command to execute

PRIMDS coinmand in SUI mode,
A-170

sui_set_tabs to set tab stops
for SUI mode, A-170

telljmodes to display current
modes, A-172

tld to list file directory in
SUI mode, A-175

toggle_redisp {CTRL-X} {CIRL-T}
to toggle redisplay mode, A-175

turr_mode_off or turr_jnode_on to
turn mode off or on, 8-2, A-178

view_f ile to view a file in
read-only mode, A-185

vld for verbose directory
listing in SUI mode, A-186

MODIFY
save_all__f iles to save all

modified files, A-147

MODULO
modulo to compute remainder in

integer division, 3-16, A-114

MDD_ONE_WINDCIW
modjonejwindow {CTRL-X} 1 to

change multiwindow display to
one window, A-113

MDDJSPLITJWINDOW
modJsplit_window {CTRL-X} 2 to

restore two window display,
A-113

MDDJWRITEJFILE
modJwrite_file {CTRL-X} {CTRL-W}

to write buffer to file, A-114

MDREJARGS_P
morejargsjo to test string

arguments pending, A-115
MOVE

backwardjclause (f) {CIRL-X}
{CIRL-Z} {CTRL-A} to move
cursor backward by clauses,
7-6, A-25

backwardjpara {CTRL-X} [to move
cursor backward by paragraphs,
5-11, A-28

MDVE (Continued)
backwardjsentence(f) {ESC} A to

move cursor backward by
sentences, 7-6, A-28

bacKjchar {CTRL-B} to move
cursor backward by characters,
7-2, A-22

bacKjpage {ESC} V to move cursor
backward by pages, A-22

bacK_tab to move cursor backward
by tabs, A-23

bacK_to_nonwhite {ESC} M to move
cursor backward to nonwhite
space character, A-23

bacKjword {ESC} B to move cursor
backward by words, 7-4, A-24

beginJLine {CTRL-A} to move
cursor backward to beginning
of line, 7-5, A-31

endjline to move cursor to end
of line, 7-5, A-61

findjbuffer to move to beginning
of buffer, A-71

forwardjchar {CTRL-F} to move
cursor forward by characters,
7-2, A-74

forwardjclause (f) {CTRL-X}
{CTRL-Z} {CTRL-E} to move
cursor forward by clauses,
7-6, A-74

forwarojpara to move cursor
forward by paragraphs, A-77

forwardjsentence (f) {ESC} E to
move cursor forward by
sentences, 7-6, A-79

forwardjword {ESC} F to move
cursor forward by words, A-80

gotoJLine to move cursor to line
of buffer, 7-5, A-87

go_to_buffer to move cursor to
buffer, A-85

go_to_cursor to move cursor,
7-9, A-86

go_to_hpos to move cursor to
horizontal position, A-86

go_to_window to move cursor to
buffer of window, A-86

lisp_comment to move cursor to
LISP mode comment column and
insert semicolon, A-102

mark_para {ESC} H to mark end of
paragraph and move cursor to
beginning, A-lll

Second Edition X-44

INDEX

MOVE (Continued)
marK_whole {CTRL-X} H to mark

end of buffer and move cursor
to beginning, A-lll

movejoottom {ESC} > to move
cursor to bottom of buffer,
A-115

move_top {ESC} < to move cursor
to top of buffer, A-116

nextJLine (_command) {CIRL-N} to
move cursor to next line, 7-4,
A-117

nextjpage {CTRL-V} to move
window forward a group of
lines, A-ll8

prev_line (_command) {CTRL-Z} to
move cursor to previous line,
7-4, A-127

repaint {CTRL-X} R to move
cursor to window line, A-141

skipjoack__over_white to move
cursor backward over white
space characters, 7-2, A-161

skipJoacK_to_white to move
cursor backward to white space
character, 7-2, A-162

skipjoverjwhite to move cursor
forward over white space
characters, 7-2, A-162

skip_to_white to move cursor
forward to white space
character, 7-2, A-163

tab {CTRL-I} to move cursor to
the next, 7-2, A-171

type_tab to move cursor forward
by tab stops, 7-2, A-179

MDVEJ30TTOM
movejoottom {ESC} > to move

cursor to bottom of buffer,
A-115

MDVEJTOP
move_top {ESC} < to move cursor

to top of buffer, A-116

MULTIPLE
setq for arrays with multiple

names, 3-23

MULTIPLICATION
* for multiplication, 3-14, A-6

MULTIPLIER
multiplier to multiply numeric

argument by four, A-116
MULTIPLY

multiplier to multiply numeric
argument by four, A-116

MULTIWINDCW
modJone_window {CTRL-X} 1 to

change multiwindow display to
one window, A-113

one_window to change multiwindow
display to one window, A-121

NA
Soia abbreviation for

Stnumeric_arg, 5-29, 5-4, 5-5,
5-6, 5-9, A-4

NAME
buffer jiame to get buffer name,

A-34
file name conventions with .EM

and .EFASL suffixes, 2-13
filejiame to get buffer default

file name, A-68
get_filename {CTRL-X} {CTRL-Z}

{CTRL-F} to get file name, A-84
get_pname to get print name of

atom, A-84
setq for arrays with multiple

names, 3-23
set_key to bind keypath to

function name, 2-11, A-156
set_permanent_key to bind

keypath to function name,
2-11, 2-8, A-158

user jiame global variable with
login name, A-182

NEGATION
"not" for logical negation, 4-8,

A-118
- for subtraction or negation,

3-15, A-9

X-45 Second Edition

EMACS EXTENSION WRITING GUIDE

NEST
nested lists, 3-17, 3-4

NEWLINE
cret_indent_relative {CTRL-X}

{RETURN} to insert newline and
indent, A-45

mergeJLines {ESC} ~ to merge
lines by replacing newline
character with space, A-112

NL newline character global
variable, A-13

open_line {CTRL-O} to insert
newline at cursor, 7-5, A-121

terpri to insert newline at
cursor, A-174

wrap to insert newline for word
wrapping, A-190

NEXT
assurejcharacter to get next

keyboard character, 6-4, A-20
nextjouf to cycle to next text

buffer, A-116
nextjouff variant of nextjouf,

A-117
next_line (jcommand) {CTRL-N} to

move cursor to next line, 7-4,
A-117

nextjpage {CTRL-V} to move
window forward a group of
l i nes , A- l l 8

tab {CTRL-I} to move cursor
the next, 7-2, A-171

to

NL
NL newline character global

variable, A-13

ND
functions with no arguments, 3-7
yesno to prompt user for yes or

no reply, 7-15, A-194

NONWHITE
bacK_tojnonwhite {ESC} M to move

cursor backward to nonwhite
space character, A-23

NOT (Continued)
abbreviation for
A-14

NTH

"not", 4-8,

NOT
"not" for logical negation, 4-8,

A-118

nth to get n'th character in
string, A-118

NTHCAR
nthcar to get n'th car of a

list, A-119
NULL

lists and null lists, 3-3
null to test for null list,

A-119, A-119

NUMBER
t tells line numbering status,

A-2
toff turns line numbering off,

A-2
ton turns line numbering on, A-2
arrayjdimension for number of

dimensions in an array, 3-24,
A-19

insert_version to get EMACS
version number, A-96

length to compute number of
elements in a list, 3-25

lines_ir_file to get number of
lines in a file, A-101

linejiumber to get current line
number, A-101

majorjwindowjcount to get number
of major windows, A-108

numberp to test if argument is a
number, A-120

NUMBERP
numberp to test if argument is a

number, A-120

NUMERIC
Sdefault for default value of

defcom numeric argument, 5-5,
5-6, 5-7

Stignore to ignore defcom numeric
arguments, A-4

Stnumeric_arg for defcom numeric
arguments, 5-29, 5-4, 5-5,
5-6, 5-9, A-4

Second Edition X-46

INDEX

NUMERIC (Continued)
Stpass for defcom numeric

argument local variable, 5-29,
5-5, A-5

convert_tojoase to convert
integer to numeric base, A-42

multiplier to multiply numeric
argument by four, A-116

numeric_argument to get numeric
argument to defcom coinmand,
5-2, 5-4, A-120

NUMERICJVRG
Stna abbreviation for

&numeric_arg, 5-29, 5-4, 5-5,
5-6, 5-9, A-4

Stnumeric_arg for defcom numeric
arguments, 5-29, 5-4, 5-5,
5-6, 5-9, A-4

NUMERIC__ARGUMENT
numeric_argument to get numeric

argument to defcom coinmand,
5-2, 5-4, A-120

OBJECT
eq test whether arguments are

equal objects, A-62
lambda to build function object,

A-99

OFF
toff turns line numbering off,

A-2
2doff to turn off

two-dimensional mode, A-ll
alljmodesjof f to turn all modes

off, A-15
fill_off and fill_on to set fill

mode on or off, A-70
fill_off to set fill mode off in

creating macros, 2-3
high_bit_off to turn off

high-order bits in string
characters, 6-6, A-89

lispjon and lisp_off to turn
LISP mode on or off, 1-3, 8-2,
A-102

overlayjoff and overlayjon to
turn overlay mode on or off,
A-123

OFF (Continued)
popmark to pop mark off mark

stack, A-125
turr_jncde_off or turnjnodejon to

turn mode off or on, 8-2, A-178

ON
ton turns line numbering on, A-2
2don to turn on two-dimensional

mode, A-ll
cursor_on_.current_line_p to test

if cursor is on current line,
A-49

cursor_same__line_p to test
cursors if on the same line,
A-49

dispatch_info for information on
mode or dispatch table, 9-4,
A-58

explain_key {ESC} ? to get
information on keypath, A-66

fill_off and filljon to set fill
mode on or off, A-70

foundjfilejiook turns on mode
for file suffix, A-81

high_bit_on to turn on
high-order bits in string
characters, 6-6, A-90

lispjon and lispjoff to turn
LISP mode on or off, 1-3, 8-2,
A-102

overlayjoff and overlayjon to
turn overlay mode on or off,
A-123

ring_theJoell type send bell
{CIRL-G} on terminal, A-145

sendjraw_string to type string
on terminal, A-154

turr__mode_off or turnjnode_on to
turn mode off or on, 8-2, A-178

view_lines {CTRL-X} {CTRL-Z}
{CTRL-V} to update screen on
slow terminal, A-185

ON-UNIT
*catch goto label or on-unit

function, A-7
*throw goto or on-unit function,

A-8
catch goto label or on-unit

function, A-37

X-47 Second Edition

EMACS EXTENSION WRITING GUIDE

ON-UNIT (Continued)
throw goto or on-unit function,

A-175

ONE
modjonejwindow {CTRL-X} 1 to

change multiwindow display to
one window, A-113

one_window to change multiwindow
display to one window, A-121

ONEJWINDOW
onejwindow to change multiwindow

display to one window, A-121

ONTO
pushmark to push mark onto mark

stack, A-134

OPEN
findjfile {CTRL-X} {CTRL-F} to

find and open a file, 2-4, A-72

OPENJiINE
open_line {CTRL-O} to insert

newline at cursor, 7-5, A-121

OPERATION
arithmetic operations, 3-13

OPTION
-ULIB option to load fasload

extension library, 2-13

OPTIONAL
Stoptional for defun arguments,

5-15, 5-16, 5-24, A-4

OR
"or" for logical or, 4-8, A-122
I abbreviation for "or", 4-8,

A-14

OTHEPJWINDCK
otherjwindow {CTRL-X} C to

switch cursor to other window,
A-122

OUTPUT
interactive input and output

i/o, 6-1

OUTPUT (Continued)
primos_externa3__como to execute

PRIMDS command with como
output, A-129

OVER
skipJoacKjoverjwhite to move

cursor backward over white
space characters, 7-2, A-161

skipjoverjwhite to move cursor
forward over white space
characters, 7-2, A-162

OVERLAY
overlayjoff and overlayjon to

turn overlay mode on or off,
A-123

overlayjrubout to delete a
character in overlay mode,
A-123

self_insert and overlayer to
insert character into buffer,
A-124, A-154

OVERWRITE
primos_internal_quiet to execute

PRIMDS coinmand overwriting
screen, A-130

PACKAGE
loadjpackage to load a package,

A-105

PAD
str ingjof_J.engthji to pad or

truncate string, A-167

PAGE
bacKjpage {ESC} V to move cursor

backward by pages, A-22

PAINT
refresh {CTRL-L} to repaint

display screen, A-139

PARAGRAPH
backwardjpara {CTRL-X} [to move

cursor backward by paragraphs,
5-11, A-28

entities: character, whitespace,
word, line, region, buffer,
clause, sentence, paragraph,
7-1

Second Edition X-48

INDEX

PARAGRAPH (Continued)
fill__para {ESC} Q to fill and

adjust a paragraph, A-71
forwardjpara to move cursor

forward by paragraphs, A-77
marKjpara {ESC} H to mark end of

paragraph and move cursor to
beginning, A-lll

unticty to remove indenting and
justification from paragraph,
A-181

PARENTHESES
balbak {ESC} {CIRL-B} to match

parentheses backward in LISP
mode A—30

balfor'{ESC} {CTRL-F} to match
parentheses forward in LISP
mode, A-30

closejparen to match parentheses
in LISP mode, A-40

PARTIAL
ignorejprefix to abort partially

completed command sequence,
A-91

PASS
Stcharacter_argument with defcom

for keystroke passing, 5-9, A-3
Stpass for defcom numeric

argument local variable, 5-29,
5-5, A-5

PATTERN
decompose to rearrange a list

into a pattern, A-50

PAUSE
sleep_for_r_jnilliseconds to

pause for time interval, A-164
PEEL

debugging PEEL programs with
{ESC} {ESC} and {ESC} X, 6-7

dump_file to compile PEEL source
to fasdump, 2-12, A-61

EMACS PEEL environment, 5-1
expandjnacro to expand macro

into PEEL source, 2-4, A-66
loadjpljsource to load and

execute PEEL source file, 2-7,
A-105

PEEL (Continued)
pi to compile and execute PEEL

source code, 2-7, 3-5, 5-2,
A-124

read to get PEEL form at cursor,
A-13 8

return to terminate PEEL
function, A-144

withjcleanup to execute PEEL
code and perform cleanup, A-189

with_cc»inmancl_abortJiandler to
execute PEEL code with a
command abort handler for
errors, A-190

with_cursor to execute PEEL code
and reset cursor, 7-11, 7-8,
A-190

with_nojredisplay to execute
PEEL code suppressing
redisplay, A-190

writing PEEL source program
extensions, 5-1

PENDING
have_input_p to test for pending

keyboard input, A-88
more_args_p to test string

arguments pending, A-115

PENDING!JREENTER
pendingjreenter variant of

suppressjredisplay, A-124

PERFORM
do_forever to perform infinite

loop, 4-1, 4-2, 4-3, A-59
withjcleanup to execute PEEL

code and perform cleanup, A-189

PERIOD
suffix$ to return substring

after rightmost period (.),
A-169

PHANTOM
primos_external to execute

PRIMDS command with phantcm
job, A-129

PL
pi to compile and execute PEEL

source code, 2-7, 3-5, 5-2,
A-124

X-49 Second Edition

EMACS EXTENSION WRITING GUIDE

PLIST
get to get value for tag in

property list (plist), A-83
putprop to assign tag and value

to property list (plist), A-135
remprop to remove tag and value

from property list (plist),
A-141

PI__MINIBUFFER
pljninibuffer {ESC} {ESC} to

type an expression to be
compiled and executed, 3-4,
5-2, A-124

POINT
delete_point_cursor to delete

text between point and cursor,
7-12, A-54

exchangejnark {CTRL-X} {CTRL-X}
to exchange mark and point,
A-65

suijexchangejnark to exchange
mark and point in SUI mode,
A-170

white_delete {ESC} \ to delete
white space around point, A-187

P0INTJCURSOI_.TOJ5TRING
point_cursor_to_string to get

text between cursors, 7-11,
A-125

POP
nark {CTRL-@} to set or pop a

mark, 7-7, A-109
popmark to pop mark off mark

stack, A-125

POPMARK
popmark to pop mark off mark

stack, A-125

PORTION
stem_of_line to get leading

portion of line, 7-5, A-166
POSITION

curjipos to get current
horizontal position of cursor,
A-46

POSITION (Continued)
go_to_hpos to move cursor to

horizontal position, A-86
indent__line_to_hpos to indent

line to horizontal position,
A-91

indentjrelative to indent line
to horizontal position (hpos),
5-24, A-91

save_tab to save tab stop
positions, A-148

settabs_from_table or setft to
set tab stops from column
positions, A-160

splitJUne {ESC} {CTRL-O} splits
line preserving horizontal
position, A-165

tell_leftjnargin to display left
margin position, A-172

telljrightjnargin to display
right margin position, A-173

transposejword {ESC} T to invert
word positions, A-176

trin__date or trimjdt to insert
date at cursor position, A-177

twiddle {CTRL-T} to reverse
character positions, 7-2, A-179

whitespace_to_hpos to insert
white space to horizontal
position, A-187

PREFIX
Stprefix for defcom invocation

character insertion, A-5
fiHjendJtoken__insert__left and

filljendJtoken_insert_pfx to
wrap to fill column and insert
command characters, A-70

wrap_line_with_pref ix to specify
wrap column and prefix string,
A-191

FREPEND
prependjtojxif {CTRL-X} P to

prepend region to beginning of
buffer, 7-7, A-125

prependJto__file {CIRL-X}
{CTRL-Z} P to prepend region
to beginning of file, 7-7,
A-126

Second Edition X-50

INDEX

PREPEND_TO_BUF
prepencl_tojouf {CTRL-X} P to

prepend region to beginning of
buffer, 7-7, A-125

PREPEND_TO_J7ILE
prependJto_file {CTRL-X}

{CTRL-Z} P to prepend region
to beginning of file, 7-7,
A-126

PRESERVE
split_line {ESC} {CTRL-O} splits

line preserving horizontal
position, A-165

PREVIOUS
prevjouf {ESC} P to cycle to

previous text buffer, A-126
prev__line (jcommand) {CTRL-Z} to

move cursor to previous line,
7-4, A-127

IREVJBUF
prevjouf {ESC} P to cycle to

previous text buffer, A-126

PREVJLINE (JCOMMAND)
prev_JLine (jcommand) {C1RL-Z} to

move cursor to previous line,
7-4, A-127

PREV L̂INEJOOMMAND
^p_prev^ine_command variant of

prev_J.ine_command, A-14

PRIME
ItoP to convert integer to Prime

character with high-order bit,
6-5, A-13

Ptol to convert Prime character
with high-order bit to
integer, 6-6, A-13

PRIMDS
ABBREV PRIMDS command, 2-13
af to insert active PRIMOS

function result, A-15
evaluate_af to evaluate active

PRIMDS function, A-64
ld to do PRIMDS LD command, A-100

PRIMDS (Continued)
priinos_command {CTRL-X} {CIRL-E}

to execute PRIMDS command,
A-128

primosjexternal to execute
FRIMDS cx)mmand with phantcm
job, A-129

prjuios_exterral_pomo to execute
FRIMDS command with como
output, A-129

primos_internaljquiet to execute
PRIMDS <oommand overwriting
screen, A-130

primos__internal__screen to
execute PRIMDS command, A-130

primosjrecycle to run PRIMDS
rescheduler, A-131

primos_smsgl to send PRIMDS
message to user, A-131

suij?r:uiX)S_coinmand to execute
FRIMDS command in SUI mode,
A-170

PRIN1
prinl and print to display or

insert value, 3-6, 6-6, A-131

PRINT
getjpname to get print name of

atom, A-84
prinl and print to display or

insert value, 3-6, 6-6, A-131
reject to print "Invalid

command:" in minibuffer, A-140

PRINTOUT
init__localjdisplays to clear

screen and start printout
mode, 6-6, A-94

localjdisplayjgenerator to
display line in printout mode,
6-6, A-106

PROGN
progn to evaluate expressions,

A-133

PROGRAM
debugging PEEL programs with

{ESC} {ESC} and {ESC} X, 6-7
if for conditional program

execution, 4-1, 4-5, A-90

X-51 Second Edition

EMACS EXTENSION WRITING GUIDE

PROGRAM (Continued)
LISP programming language, 1-4
writing PEEL source program

extensions, 5-1

PROMPT
Stprompt for defcom argument

prompting, 5-6, 5-7, A-5
minibuffer for prompting and

response messages, 6-2, 6-3
minibuffer_response variant of

prompt, A-113
minibufjresponse variant of

prompt, A-112
prompt to prompt user for

string, 6-3, 6-4, A-133
promptj:or_integer to prompt

user for integer, 6-3, 6-4,
A-133

yesno to prompt user for yes or
no reply, 7-15, A-194

PROMPT__P0P_INTEGER
prompt_for_integer to prompt

user for integer, 6-3, 6-4,
A-133

FR0MFT_JOP_STRING
prompt__for_string to prompt user

for string, 6-3, A-134

PROPERTY
get to get value for tag in

property list (plist), A-83
properties of a variable, 5-30
putprop to assign tag and value

to property list (plist), A-135
remprop to remove tag and value

from property list (plist),
A-141

PTOI
Ptol to convert Prime character

with high-order bit to
integer, 6-6, A-13

PUSH
pushmark to push mark onto mark

stack, A-134

PUSHMARK
pushmark to push mark onto mark

stack, A-134

PUTPROP
putprop to assign tag and value

to property list (plist), A-135

P_JREV_LINE_COMMAND
^p_prev^ine_command variant of

prev_line_command, A-14

QUERY
queryjreplace {ESC} % to replace

text strings with query, A-135

QUEPXĴ EPLACE
queryjreplace {ESC} % to replace

text strings with query, A-135

QUIT
quit {CTRL-X} {CTRL-C} to return

to EMACS, A-136

QUOTE
"e for binding of defun

arguments, 5-24, A-5
quote ' to return argument

without evaluating it, 3-10,
3-25, A-137

QUOTEJCOMMAND
quote_command {CTRL-Q} to read

typed character literally,
A-137

~qj_uote_command variant of
auote_command, A-14

QjQUOTELCDMMAND
~cxj_uote_command variant of

c_uote_command, A-14

RANGEJTOJSTRING
range_to_string to get string

between two cursors, 7-12,
A-137

READ
quote_command {CTRL-Q} to read

typed character literally,
A-137

Second Edition X-52

INDEX

READ (Continued)
read to get PEEL form at cursor,

A-13 8
readjcharacter to read typed

character, 6-5, A-138
reaojfile to read a file into

text buffer, A-138

READ-ONLY
view_file to view a file in

read-only mode, A-185

READ_CHARACTER
readjcharacter to read typed

character, 6-5, A-138

READ__ETLE
reaojfile to read a file into

text buffer, A-138

REARRANGE
decompose to rearrange a list

into a pattern, A-50

RECURSIVE
recursive factorial command and

function, 5-33
recursive functions, 5-31

REDISPLAY
redisplay to update screen

window, A-139
suppress_redisplay to enable or

disable redisplay, A-170
toggle_redisp {CIRL-X} {CIRL-T}

to toggle redisplay mode, A-175
with_no_redisplay to execute

PEEL code suppressing
redisplay, A-190

REEXECUTE
reexecute to reexecute last

command, A-139

REFRESH
refresh {CTRL-L} to repaint

display screen, A-139
reset to reset and refresh

screen, A-142

REGION
appendjtojouf {CTRL-X} A to

append region to buffer, 7-7,
A-16

appendJtoJEile {CTRL-X} {CTRL-Z}
A to append region to file,
7-7, A-17

copyjregion {ESC} W to copy
region into kill ring, 7-7,
A-44

deletejregion to delete region,
7-7, A-55

entities: character, whitespace,
word, line, region, buffer,
clause, sentence, paragraph,
7-1

killjregion to delete text in
region, 7-7, A-98

lowercase_region {CTRL-X}
{CTRL-L} to change letters in
region to lower case, A-107

prepencjtojouf {CTRL-X} P to
prepend region to beginning of
buffer, 7-7, A-125

prependjtojfile {CTRL-X}
{CTRL-Z} P to prepend region
to beginning of file, 7-7,
A-126

region entity, 7-6
uppercase_region {CTRL-X}

{CTRL-U} to convert letters in
region to upper case, A-181

yankjregion {CTRL-Y} to insert
killed region, A-193

REJECT
reject to print "Invalid

command:" in minibuffer, A-140

RELATION
<f <=r =r *=r >r >= relation

operators, 4-8, A-ll

RELEASE
releasing allocated array

storage, 3-23

REMAINDER
modulo to compute remainder in

integer division, 3-16, A-114

X-53 Second Edition

EMACS EXTENSION WRITING GUIDE

REMOVE
cdr to return list with first

item removed, 3-28, A-37
remove_charset to remove

characters from string, 7-14,
A-141

remprop to remove tag and value
from property list (plist),
A-141

trim to remove leading and
trailing blanks, 7-2, A-177

untidy to remove indenting and
justification from paragraph,
A-181

REMOVEJCHARSET
remove_charset to remove

characters from string, 7-14,
A-141

REMFROP
remprop to remove tag and value

from property list (plist),
A-141

REPAINT
refresh {CTRL-L} to repaint

display screen, A-139
repaint {CTRL-X} R to move

cursor to window line, A-141

REPEAT
Strepeat for defcom iteration

count, A-5
REPLACE

casejreplace? to test case in
replacing, A-36

case_replace_of f and
case_replace_on for upper and
lower case in replacing, A-36

mergeJLines {ESC} ~ to merge
lines by replacing newline
character with space, A-112

queryjreplace {ESC} % to replace
text strings with query, A-135

replace to replace one string
with another, A-142

translate to translate a string
replacing characters, 7-14,
A-176

REPLACE (Continued)
yanK_replace {ESC} Y to replace

yanK_region text, A-193

REPLY
yesno to prompt user for yes or

no reply, 7-15, A-194

RESCHEDULER
primos_recycle to run PRIMDS

rescheduler, A-131

RESET
reset to reset and refresh

screen, A-142
usingjcursor to execute

statements and reset cursor,
A-182

withjcursor to execute PEEL code
and reset cursor, 7-11, 7-8,
A-190

RESETJTABS
reset_tabs to set tab stops to

default values, A-143

RESPONSE
minibuffer for prompting and

response messages, 6-2, 6-3
yanKjninibuffer {ESC} {CTRL-Y}

to insert minibuffer response,
A-192

REST
Strest to put defun arguments

into a list, 5-24, A-5
restjofJLine to to get string

with rest of line, 7-5, A-143

REST$
rest$ variant of suffix$, A-143

RESTORE
default_tabs to restore default

tab stops, A-52
get_tab to restore saved tab

stops, A-85
nodjsplitjwindow {CTRL-X} 2 to

restore two window display,
A-113

" >

Second Edition X-54

INDEX

RESTRICT
rest r ic t_ to_su i$ to res t r ic t

functions to SUI mode, A-143

RESTRICT_TO_SUI$
restrict_to_sui$ to restrict

functions to SUI mode, A-143

RESTjDFjLINE
rest_of_line to to get string

with rest of line, 7-5, A-143

RESULT
af to insert active FRIMDS

function result, A-15

RETRIEVE
apropos {CIRL-_} A help facility

to retrieve list of commands,
1-2, 5-3, A-18

RETURN
Sinacro for defun list return, A-4
Streturns for data type returned

by defun function, 5-19, 5-22,
5-24, A-6

aref to return value of array
element, 3-21, A-18

car to return first item in
list, 3-28, A-35

cdr to return list with first
item removed, 3-28, A-37

quit {CTRL-X} {C1RL-C} to return
to EMACS, A-136

quote ' to return argument
without evaluating it, 3-10,
3-25, A-137

return to terminate PEEL
function, A-144

suffix$ to return substring
after rightmost period (.),
A-169

RETURNS
-returns for data type returned

by defun function, 5-19, 5-22,
5-24, A-6

REVERSE
reverse to reverse the elements

in a list, 3-26

REVERSE (Continued)
twiddle {CTRL-T} to reverse

character positions, 7-2, A-179

REVERSEJSEARCH (_CDMMAND)
reversejsearch (_command)

{CTRL-R} to search backward,
A-144

RIGHT
dispatch to compare text to

right of cursor with string,
4-1, 4-11, A-57

ifjat to compare text to right
of cursor with string, 4-6,
A-90

looking_at to compare text to
right of cursor with string,
4-6, A-107

setjrightjnargin {CTRL-X} F to
set right margin, 5-10, A-159

tell__right_margin to display
right margin position, A-173

RIGHTMOST
suffix$ to return substring

after rightmost period (.),
A-169

RING
copy_region {ESC} W to copy

region into kill ring, 7-7,
A-44

RINGJTHEJFJELL
ring_the_bell type send bell

{CTRL-G} on terminal, A-145

RUBOUT_CHAR
rubout_char {CTRL-H} {backspace}

{delete} to delete character,
7-2, A-145

RUBOUTJTORD
ruboutjword {ESC} {CTRL-H} {ESC}

{backspace} {ESC} {delete} to
delete word, 7-4, A-146

RUN
primos_recycle to run PRIMDS

rescheduler, A-131

X-55 Second Edition

EMACS EXTENSION WRITING GUIDE

S-EXPRESSION
evaluation of symbolic

expressions s-expressions,
3-4, 3-6, 3-9

functions in symbolic
expressions s-expressions, 3-6

symbolic expressions
s-expressions, 3-4

SAME
cursor_same_line_p to test

cursors if on the same line,
A-49

samejbufferj? to test cursors in
same text buffer, A-146

SAMEJBUFFERJP
samejouf ferjp to test cursors in

same text buffer, A-146

SAVE
create_text_save_buffer$ for

circular list of buffers, A-45
get_tab to restore saved tab

stops, A-85
save_all_files to save all

modified files, A-147
savejexcursion to save cursor

and modes and execute
arguments, 7-10, A-147

save_file {CTRL-X} {CTRL-S}
{CTRL-X} S to save buffer in
file, A-147

savejposition to save cursor and
modes and execute arguments,
A-148

save_tab to save tab stop
positions, A-148

SAYJORE
sayjnore variant of

local__display_generator, A-148

SCAN
scannerrors tojscan buffer for

language errors, A-148

SGMLJ2RRDRS
scanjerrors to scan buffer for

language errors, A-148

SCOPE
scope of a variable, 5-30

SCREEN
initJLocaljclisplays to clear

screen and start printout
mode, 6-6, A-94

priinosjLnternaljquiet to execute
PRIMDS command overwriting
screen, A-130

redisplay to update screen
window, A-139

refresh {CTRL-L} to repaint
display screen, A-139

reset to reset and refresh
screen, A-142

view_lines {CTRL-X} {CTRL-Z}
{CTRL-V} to update screen on
slow terminal, A-185

SCROLL
scrolljotherjoackward to scroll

other window backward, A-149
scrolljother_forward to scroll

other window forward, A-149
setjiscroll to set hcol to

control horizontal scrolling,
A-156

SCR0LIi_OTHE3_BACKWARD
scrolljotherjoackward to scroll

other window backward, A-149

SCHXjIJOTHER_F0RWARD
scroll_other_forward to scroll

other window forward, A-149

SEARCH
case? to test case in searching,

A-35
casejoff and casejon for upper

and lower case in searches,
A-35

f orwardjsearch (_oommand)
{CTRL-S} to search forward,
A-78

index to search for one string
in another, 7-14, 7-15, A-93

reverse_search (_command)
{CTRL-R} to search backward,
A-144

Second Edition X-56

INDEX

SEARCH (Continued)
search to search one string for

another, A-150
search_back__Eirst_charset_line

variant of search_bK_ir_JLine,
A-150

sear ch_JoacK_jf i r st_r*otjchar se t_lin
variant of verifyJoK_in_line,

A-150
searchJok and searchJbK_in_line

to search backward for set of
characters, A-150

search_charsetJoackward variant
of searchJok, A-151

search_charset_forward variant
of search_fd, A-151

search_fd and search_fd_in__line
to search forward for set of
characters, A-151

search__for_first_charset_line
variant of search_fdjin_line,
A-152

searc+__for_first_not_charset_line
variant of verify_fc_ir_line,
A-152

searchjiot_charset_backward
variant of verifyjok, A-152

searct_not_charset_jEorward
variant of verifyjfd, A-152

verify_bk and verify_JoK_in_line
to search backward for
character not in string, A-183

ver i fy_fd and ver i fy_fd j in_l ine
to search forward for
character not in string, A-184

SEGMENT
show_lib_alc$ to display shared

EMACS library segments, A-161

SELECT
select to evaluate and compare

value to determine action,
4-1, 4-9, A-152

SELEXXJVNYJWINDCW
select_any_window {CTRL-X} 4 to

cycle through windows, A-153

SELECT__BUF
selectjouf {CTRL-X} B to change

buffers, 2-4, A-153

SELFJNSERT
self_insert and overlayer to

insert character into buffer,
A-124, A-154

SEMIOOLON
lisp_comment to move cursor to

LISP mode comment column and
insert semicolon, A-102

SEND
primosjsmsgl to send PRIMDS

message to user, A-131
ring_the_Joell type send bell

{CTRL-G} on terminal, A-145

SENDJ?AW_STRING
sendjraw_string to type string

on terminal, A-154

SENTENCE
backwardjkill_sentence {CTRL-X}

{CTRL-H} to kill text backward
by sentences, 7-6, A-27

backwardjsentence (f) {ESC} A to
move cursor backward by
sentences, 7-6, A-28

entities: character, whitespace,
word, line, region, buffer,
clause, sentence, paragraph,
7-1

forwardJkill_sentence {ESC} K to
kill text forward by
sentences, 7-6, A-76

forwardjsentence(f) {ESC} E to
move cursor forward by
sentences, 7-6, A-79

sentence entity, 7-6

SEPARATION
separation of functions, 5-31

SEQUENCE
escape sequences, A-63
ignorejprefix to abort part ial ly

completed command sequence,
A-91

SET
aset to set array element, 3-19,

3-22, A-19

X-57 Second Edition

EMACS EXTENSION WRITING GUIDE

SET (Continued)
convert_tabs to set tab stops,

A-41
fill__off and filljon to set fill

mode on or off, A-70
filljoff to set fill mode off in

creating macros, 2-3
fset to set the function cell of

an atom, A-81
handler_info to get or set

information about a handler,
A-87

hcol to get or set horizontal
column, A-89

hscroll to set horizontal column
(hcol), A-90

mark {CTRL-@} to set or pop a
mark, 7-7, A-109

reset_tabs to set tab stops to
default values, A-143

searchJok and searchJoK_in_line
to search backward for set of
characters, A-150

search_fd and search_fdjin_line
to search forward for set of
characters, A-151

set to set an atom value, A-155
setmark to set mark, A-159
settab to set tab stops, A-160
settabs_from_table or setft to

set tab stops from column
positions, A-160

set_cc»mniandJabort_flag to abort
command, A-155

set_fill_column to fill mode
column, A-155

setjiscroll to set hcol to
control horizontal scrolling,
A-156

set_key to bind keypath to
function name, 2-11, A-156

setJLeftjnargin to set left
margin, A-157

set_mode to set EMACS buffer
mode, A-157

setjmode_key to bind keypath to
command, 8-4, A-158

setjpermanentjcey to bind
keypath to function name,
2-11, 2-8, A-158

setjrightjnargin {CTRL-X} F to
set right margin, 5-10, A-159

SET (Continued)
set_tab variant of settab, A-159
set_tabs variant of settab, A-159
sui__set_tabs to set tab stops

for SUI mode, A-170
tablist to set tab stops from

terminal, A-171
tablist_to_array to set tab

stops from list, A-172
terminal_J.nfo to get or set

terminal information, A-173
window_info to set or get window

information, 9-6, A-188
SETFT

settabs_from_table or setft to
set tab stops from column
positions, A-160

SETMARK
setmark to set mark, A-159

SETQ
assignment as side-effect of

setq, 3-10
setq for arrays with multiple

names, 3-23
setq to assign value to atom,

3-10, A-160

SETTAB
settab to set tab stops, A-160
set_tab variant of settab, A-159
set_tabs variant of settab, A-159

SET~ABS_FRO*CrABLE
settaDs_from_table or setft to

set tab stops from column
positions, A-160

SHARE
show_JLib_alc$ to display shared

EMACS library segments, A-161

SHAREJLIBRARY$
share__library$ to load fasload

file at EMACS initialization,
A-161

SHCW_XiIB_J\LC$
show_JLib_alc$ to display shared

EMACS library segments, A-161

Second Edition X-58

INDEX

SIDE-EFFECT
assignment as side-effect of

setq, 3-10
effect and side-effect, 3-9

SKIP
skipJoacK_over_white to move

cursor backward over white
space characters, 7-2, A-161

skipJoacK_to_white to move
cursor backward to white space
character, 7-2, A-162

skip_overjwhite to move cursor
forward over white space
characters, 7-2, A-162

skip_to_white to move cursor
forward to white space
character, 7-2, A-163

SLEEP_X)IUUttLLISEOONDS
sleep__forj\jnilliseconds to

pause for time interval, A-164
sleep^orjumilliseconds used

with minibuffer message, 6-2

SLOW
view_lines {CTRL-X} {CTRL-Z}

{CTRL-V} to update screen on
slow terminal, A-185

SORT
sort_dt to insert date into

buffer in sortable format,
A-164

sort_JList to sort a list, A-164

SORTJDT
sort_dt to insert date into

buffer in sortable format,
A-164

SORTJiIST
sort_JList to sort a list, A-164

SOURCE
dump_file to compile PEEL source

to fasdump, 2-12, A-61
expandjmacro to expand macro

into PEEL source, 2-4, A-66
fasdump to compile and dump

source into fasload file, A-67

SOURCE (Continued)
loadjpljsource to load and

execute PEEL source file, 2-7,
A-105

pi to compile and execute PEEL
source code, 2-7, 3-5, 5-2,
A-124

writing PEEL source program
extensions, 5-1

SPACE
atjwhitejchar to test if at

white space character, 4-6,
A-21

bacKJojionwhite {ESC} M to move
cursor backward to nonwhite
space character, A-23

delete_white_left and
deletejwhitejcight and
deletejwhitejsides to delete
white space, 7-2, A-55

insert_tab to insert white space
to tab stop, 7-2, A-96

leave_one_white {ESC} {SPACE} to
delete extra white space
characters, A-100

mergeJLines {ESC} ~ to merge
lines by replacing newline
character with space, A-112

skipjbackjoverjwhite to move
cursor backward over white
space characters, 7-2, A-161

skipJoacK_to_white to move
cursor backward to white space
character, 7-2, A-162

skip_over_white to move cursor
forward over white space
characters, 7-2, A-162

skip_to_white to move cursor
forward to white space
character, 7-2, A-163

whitespace global variable with
white space characters, 5-28,
A-187

whitespace_tojipos to insert
white space to horizontal
position, A-187

white_delete {ESC} \ to delete
white space around point, A-18

X-59 Second Edition

EMACS EXTENSION WRITING GUIDE

SPECIFY
wrapJLine_with_pref ix to specify

wrap column and prefix string,
A-191

SPLIT
splitJLine {ESC} {CTRL-O} splits

line preserving horizontal
position, A-165

split_window {CTRL-X} 2 to split
window into two, A-165

split_window_stay {CTRL-X} 3 to
split window into two, A-166

vsplit to split window
vertically into two windows,
A-186

SPLITJ ÎNE
split JLine {ESC} {CTRL-O} splits

line preserving horizontal
position, A-165

SPLIT_WINDCW
split_window {CTRL-X} 2 to split

window into two, A-165

SPLITJWINDOW_STAY
split_window_stay {CTRL-X} 3 to

split window into two, A-166

STACK
popmark to pop mark off mark

stack, A-125
pushmark to push mark onto mark

stack, A-134

START
Starguments to start argument

definitions of defcom, 5-6,
5-7, 5-9, A-3

STATEMENT
using_cursor to execute

statements and reset cursor,
A-182

STATUS
t tells line numbering status,

A-2

STEB_OF_LINE
stem_of_JLine to get leading

portion of line, 7-5, A-166
STOP

convert_tabs to set tab stops,
A-41

default_tabs to restore default
tab stops, A-52

get_tab to restore saved tab
stops, A-85

insert_tab to insert white space
to tab stop, 7-2, A-96

reset_tabs to set tab stops to
default values, A-143

save_tab to save tab stop
positions, A-148

settab to set tab stops, A-160
settabs_fron__table or setft to

set tab stops from column
positions, A-160

stop_doing to stop execution of
doJEorever or doj_times, 4-3,
A-167

suj__set_tabs to set tab stops
for SUI mode, A-170

tablist to set tab stops from
terminal, A-171

tablist_to_array to set tab
stops from list, A-172

type_tab to move cursor forward
by tab stops, 7-2, A-179

STOPJDOING
stopjdoing to stop execution of

doJEorever or do_r__times, 4-3,
A-167

STORAGE
releasing allocated array

storage, 3-23

STRING
-string for defun string

argument, A-6
catenate to concatenate strings,

7-14, A-37
char_to_string to convert

character to string, 6-5
currentjiandler to get string

for current handler, A-47

~ >

Second Edition X-60

INDEX

STRING (Continued)
current_line to get string with

current line, 7-5, A-47
dispatch to compare text to

right of cursor with string,
4-1, 4-11, A-57

highjbitjoff to turn off
high-order bits in string
characters, 6-6, A-89

high_bit_on to turn on
high-order bits in string
characters, 6-6, A-90

if_at to compare text to right
of cursor with string, 4-6,
A-90

index to search for one string
in another, 7-14, 7-15, A-93

insert to insert string at
cursor, A-94

integer_to_string to convert
integer to string, 6-5, A-97

lookedjat to compare text to
left of cursor with string,
A-106

lookingjat to compare text to
right of cursor with string,
4-6, A-107

more_args_p to test string
arguments pending, A-115

nth to get n'th character in
string, A-118

prompt to prompt user for
string, 6-3, 6-4, A-133

prompt_for_string to prompt user
for string, 6-3, A-134

query_replace {ESC} % to replace
text strings with query, A-135

range_to_string to get string
between two cursors, 7-12,
A-137

removejcharset to remove
characters from string, 7-14,
A-141

replace to replace one string
with another, A-142

rest_of_line to to get string
with rest of line, 7-5, A-143

search to search one string for
another, A-150

sendjrawjstring to type string
on terminal, A-154

STRING (Continued)
string data type, 3-12, 5-26,

A-167
string variables containing

text, 7-13
stringp to test for string

argument, A-16 8
stringJLength to get length of

string, A-167
string_of_lengthji to pad or

truncate string, A-167
string_to_integer to convert

string to integer, 6-5, A-168
substr to get substring of

string, 7-14, A-169
translate to translate a string

replacing characters, 7-14,
A-176

uid to get string with unique
identifier, A-180

upcase to convert string to
upper case, 7-14, A-181

verify to test string for legal
characters, A-183

verifyjok and verifyJok_ir__line
to search backward for
character not in string, A-183

verify_fd and verify_fdjir_line
to search forward for
character not in string, A-184

wrap^ine_with_pref ix to specify
wrap column and prefix string,
A-191

STRINGP
stringp to test for string

argument, A-168

SUBLIST
sublist to get sublist of list,

A-168

SUBSTR
substr to get substring of

string, 7-14, A-169
SUBSTRING

substr to get substring of
string, 7-14, A-169

suffix$ to return substring
after rightmost period (.),
A-169

X-61 Second Edition

EMACS EXTENSION WRITING GUIDE

SUBTRACTION
- for subtraction or negation,

3-15, A-9

SUFFIX
file name conventions with .EM

and .EFASL suffixes, 2-13
foundjfilejiook turns on mode

for file suffix, A-81

SUFFIX$
rest$ variant of suffix$, A-143
suffix$ to return substring

after rightmost period (.),
A-169

SUI
restrict_to_sui$ to restrict

functions to SUI mode, A-143
suijexchangejnark to exchange

mark and point in SUI mode,
A-170

suj_primos_command to execute
FRIMDS coinmand in SUI mode,
A-170

sui_set_tabs to set tab stops
for SUI mode, A-170

tld to list file directory in
SUI mode, A-175

vld for verbose directory
listing in SUI mode, A-186

SUPPRESS
withjio_redisplay to execute

PEEL code suppressing
redisplay, A-190

SUPPRESS_REDISPLAY
pending_reenter variant of

suppress_redisplay, A-124
suppressjredisplay to enable or

disable redisplay, A-170

SWITCH
otherjwindow {CTRL-X} C to

switch cursor to other window,
A-122

SYMBOL
Stsymbol for defun symbol

argument, A-6

SYMBOLIC
evaluation of symbolic

expressions s-expressions,
3-4, 3-6, 3-9

functions in symbolic
expressions s-expressions, 3-6

symbolic expressions
s-expressions, 3-4

S__FOFWARDj3EARCE_COMMAND
^sjEorwarc_searcj^c»mmand

variant of
forwarojsearci^command, A-14

TAB
backjtab to move cursor backward

by tabs, A-23
convert_tabs to set tab stops,

A-41
default_tabs to restore default

tab stops, A-52
get_tab to restore saved tab

stops, A-85
insert_tab to insert white space

to tab stop, 7-2, A-96
reset_tabs to set tab stops to

default values, A-143
save_tab to save tab stop

positions, A-148
settab to set tab stops, A-160
settabs_from_table or setft to

set tab stops from column
positions, A-160

su:L_set_tabs to set tab stops
for SUI mode, A-170

tab {CTRL-I} to move cursor to
the next, 7-2, A-171

tablist to set tab stops from
terminal, A-171

tablist_to_array to set tab
stops from list, A-172

type_tab to move cursor forward
by tab stops, 7-2, A-179

TABLE
dispatch_info for information on

mode or dispatch table, 9-4,
A-58

fincLmode to get dispatch table
for mode, A-73

modes and dispatch tables, 8-1,
8-2

Second Edition X-62

INDEX

TABLIST
tablist to set tab stops from

terminal, A-171

TABLIST_TO__ARRAY
tablist_to_array to set tab

stops from list, A-172

TAG
get to get value for tag in

property list (plist), A-83
putprop to assign tag and value

to property list (plist), A-135
remprop to remove tag and value

from property list (plist),
A-141

TELLJJBSTjMARGIN
tell_J.eftjnargin to display left

margin position, A-172

TELLJODES
telljnodes to display current

modes, A-172

TELL_JOSITI0N
telljposition {CTRL-X} = to

display buffer information,
A-173

t~ll_ju:ghtjmargin
telljrightjnargin to display

right margin position, A-173
TERMINAL

ring_the_bell type send bell
{CTRL-G} on terminal, A-145

sendjraw_string to type string
on terminal, A-154

tablist to set tab stops from
terminal, A-171

terminal__info to get or set
terminal information, A-173

terminal__type to get terminal
type, A-174

viewJLines {CTRL-X} {CTRL-Z}
{CTRL-V} to update screen on
slow terminal, A-185

TERMINAI_.INFO
terminal_info to get or set

terminal information, A-173

TERMINALJTYPE
terminal__type to get terminal

type, A-174

TERMINATE
return to terminate PEEL

function, A-144

TERPRI
terpri to insert newline at

cursor, A-174

TEST
2d to test two-dimensional mode,

A-10
atom to test for atom, A-21
atjwhitejchar to test if at

white space character, 4-6,
A-21

beginningjofJouf ferjp to test if
cursor at beginning of buffer,
4-6, A-31

beginning_of_J.inej? to test if
cursor at beginning of line,
4-6, 7-5, A-32

buffer conditions and tests, 4-6
case? to test case in searching,

A-35
case_replace? to test case in

replacing, A-36
charp to test character data

type, A-39
cursor_or_current_linej? to test

if cursor is on current line,
A-49

cursor_same_line_p to test
cursors if on the same line,
A-49

emptyjxifferjp to test buffer
empty, 4-6, A-61

endjof Joufferjp to test if
cursor at end of buffer, 4-6,
A-62

endjof_line_p to test if cursor
at end of line, 4-6, 7-5, A-62

eq test whether arguments are
equal objects, A-62

first__line_p to test if cursor
at first line of buffer, 4-6,
7-5, A-73

have_input_p to test for pending
keyboard input, A-88

X-63 Second Edition

EMACS EXTENSION WRITING GUIDE

TEST (Continued)
lastJLinejp to test if cursor at

last line of buffer, 4-6, 7-5,
A-99

line_is_blank to test current
line blank, 4-6, A-101

looking_at_char to test
character at current cursor,
A-107

member to test if item is in
list, A-112

more_args_p to test string
arguments pending, A-115

null to test for null list, A-119
numberp to test if argument is a

number, A-120
samejouf ferjp to test cursors in

same text buffer, A-146
stringp to test for string

argument, A-168
verify to test string for legal

characters, A-183
TEXT

backwardjkill_clause {CTRL-X}
{CTRL-Z} {CTRL-H} to kill text
backward by clauses, 7-6, A-26

backwardjkill_line {CTRL-X}
{CTRL-K} to kill text backward
by lines, A-27

backwardjkill_sentence {CTRL-X}
{CTRL-H} to kill text backward
by sentences, 7-6, A-27

center_line {CTRL-X} {CTRL-Z} X
to center lines of text, 5-17,
A-38

create_textjsaveJouffer$ for
circular list of buffers, A-45

date to insert date into text
buffer, A-49

delete_point_cursor to delete
text between point and cursor,
7-12, A-54

dispatch to compare text to
right of cursor with string,
4-1, 4-11, A-57

dt to insert date and time into
text buffer, A-60

europe_dt to insert date and
time in European format into
text buffer, A-63

TEXT (Continued)
forwardjkilljclause {CTRL-X}

{CTRL-Z} {CTRL-K} to kill text
forward by clauses, 7-6, A-76

forwardjkil ljsentence {ESC} K to
kill text forward by
sentences, 7-6, A-76

ifjat to compare text to right
of cursor with string, 4-6,
A-90

insertjouf {CTRL-X} {CTRL-Z} I
to insert text buffer, A-95

killjregion to delete text in
region, 7-7, A-98

kill_rest_ofJouffer to delete
text to end of buffer, A-99

listjouffers {CTRLJC} {CTRL-B}
to list text buffers, A-103

lookedjat to compare text to
left of cursor with string,
A-106

looking_at to compare text to
right of cursor with string,
4-6, A-107

nextjouf to cycle to next text
buffer, A-116

point_cursor_to_string to get
text between cursors, 7-11,
A-125

prevjouf {ESC} P to cycle to
previous text buffer, A-126

queryjreplace {ESC} % to replace
text strings with query, A-135

readjfile to read a file into
text buffer, A-138

samejoufferjo to test cursors in
same text buffer, A-146

string variables containing
text, 7-13

wallpaper to insert all help
information into text buffer,
A-187

yanK_kill__text {CTRL-X} {CTRL-Z}
{CTRL-Y} to insert
viewjcill__cing text, 7-13,
A-192

yanl_replaoe {ESC} Y to replace
yanl_region text, A-193

THROUGH
selectjanyjwindow {CTRL-X} 4 to

cycle through windows, A-153

Second Edition X-64

INDEX

THROW
*throw goto or on-unit function,

A-8
throw goto or on-unit function,

A-175

TTME
cpu_time to get cpu time, A-44
dojjjtimes to execute loop for n

iterations, 2-4, 4-1, 4-2, A-60
dt to insert date and time into

text buffer, A-60
europe_dt to insert date and

time in European format into
text buffer, A-63

sleep_j5or_n_jnilliseconds to
pause for time interval, A-164

TLD
tld to list file directory in

SUI mode, A-175

TOGGLE
toggle_redisp {CTRL-X} {CTRL-T}

to toggle redisplay mode, A-175

TOGGLEJREDISP
toggle_redisp {CTRL-X} {CTRL-T}

to toggle redisplay mode, A-175

TOKEN
fill_endJtoken_insert_left and

fill_end_token_insert_pfx to
wrap to fill column and insert
command characters, A-70

TDKEN_CHARS
token_chars global variable with

all characters in word, 5-28,
A-175

TOP
marK_top {CTRL-X} {CTRL-Z} < to

mark top of buffer, A-lll
move_top {ESC} < to move cursor

to top of buffer, A-116

TRAIL
trim to remove leading and

trailing blanks, 7-2, A-177

TRANSFORM
creating, transforming, binding

macros extensions, 2-1

TRANSLATE
translate to translate a string

replacing characters, 7-14,
A-176

TRANSPOSEJWORD
transpose_word {ESC} T to invert

word positions, A-176

TRIM
trim to remove leading and

trailing blanks, 7-2, A-177

TRIOLEATE
trimjdate or trim_dt to insert

date at cursor position, A-177

TRIH_OT
triin_date or trin_dt to insert

date at cursor position, A-177

TRUNCATE
string_of_J.engthji to pad or

truncate string, A-167

TURN
toff turns line numbering off,

A-2
ton turns line numbering on, A-2
2doff to turn off

two-dimensional mode, A-ll
2don to turn on two-dimensional

mode, A-ll
all_modes_off to turn all modes

off, A-15
foundjfilejiook turns on mode

for file suffix, A-81
high_bit_off to turn off

high-order bits in string
characters, 6-6, A-89

highjoit_on to turn on
high-order bits in string
characters, 6-6, A-90

lispjon and lispjoff to turn
LISP mode on or off, 1-3, 8-2,
A-102

overlayjoff and overlayjon to
turn overlay mode on or off,
A-123

X-65 Second Edition

EMACS EXTENSION WRITING GUIDE

TURN (Continued)
turnjnode_off or turnjnode_on to

turn mode off or on, 8-2, A-178

TORNJMDDEJOFF
turn_mode_of f or turnjnode_on to

turn mode off or on, 8-2, A-178

TORNJODEJON
turnjnode_off or turn_mode_on to

turn mode off or on, 8-2, A-178

TWIDDLE
twiddle {CTRL-T} to reverse

character positions, 7-2, A-179

TWO
modjsplitjwindow {CTRL-X} 2 to

restore two window display,
A-113

range_to_string to get string
between two cursors, 7-12,
A-137

splitjwindow {CTRL-X} 2 to split
window into two, A-165

split_window_stay {CTRL-X} 3 to
split window into two, A-166

vsplit to split window
vertically into two windows,
A-186

TWO-DIMENSIONAL
2d to test two-dimensional mode,

A-10
2doff to turn off

two-dimensional mode, A-ll
2don to turn on two-dimensional

mode, A-ll

TYPE
"any" data type, 5-27, A-16
Streturns for data type returned

by defun function, 5-19, 5-22,
5-24, A-6

array data type, 5-26, A-19
array_type for data type of

array, 3-24, A-19
atom data type, 3-12, 5-26
atoms with integer data type, 3-2
Boolean data type, A-32
boolean data type, 5-26

TYPE (Continued)
character data type, 5-26, A-39
charp to test character data

type, A-39
cursor data type, 5-27, A-48
data types, 3-12, A-49
dispatch_table data type, 5-27
function data type, A-82
handler data type, A-87
integer data type, 3-12, 5-26,

A-97
list data type, 5-26
pljninibuffer {ESC} {ESC} to

type an expression to be
compiled and executed, 3-4,
5-2, A-124

quotejcommand {CTRL-Q} to read
typed character literally,
A-137

readjcharacter to read typed
character, 6-5, A-138

ring_theJoell type send bell
{CTRL-G} on terminal, A-145

sendjrawjstring to type string
on terminal, A-154

string data type, 3-12, 5-26,
A-167

terminaljtype to get terminal
type, A-174

typef to get data type of
argument, A-180

wait_for_input to wait for user
typed character, A-186

window data type, A-188

THEAHEAD
flush_typeahead to flush

typeahead keyboard input, A-74

TYPEF
typef to get data type of

argument, A-180

TYPEJTAB
type_tab to move cursor forward

by tab stops, 7-2, A-179

UID
uid to get string with unique

identifier, A-180

Second Edition X-66

INDEX

ULIB
-ULIB option to load fasload

extension library, 2-13

UNIQUE
uid to get string with unique

identifier, A-180

UNMODIFY
unmodify {ESC} ~ to make buffer

as if unmodified, A-180

UNTIDY
untidy to remove indenting and

justification from paragraph,
A-181

UP
assoc to look up item in

association list, A-20

UPCASE
upcase to convert string to

upper case, 7-14, A-181
UPDATE

redisplay to update screen
window, A-13 9

view_JLines {CTRL-X} {CTRL-Z}
{CTRL-V} to update screen on
slow terminal, A-185

UPPER
capinitial to change character

to upper case, A-34
casejoff and case_on for upper

and lower case in searches,
A-35

case_replace_of f and
case_replace_on for upper and
lower case in replacing, A-36

downcase to convert upper case
letters to lower case, 7-14,
7-16, A-60

upcase to convert string to
upper case, 7-14, A-181

upper and lower case letters in
keypaths, 2-11

uppercase_region {CTRL-X}
{CTRL-U} to convert letters in
region to upper case, A-181

UPPER (Continued)
uppercase_word {ESC} U to

convert words to upper case,
A-182

UPPERCASELREGIDN
uppercasejregion {CTRL-X}

{CTRL-U} to convert letters in
region to upper case, A-181

UPPERCASEJWORD
uppercase_word {ESC} U to

convert words to upper case,
A-182

USER
primos_smsgl to send PRIMDS

message to user, A-131
prompt to prompt user for

string, 6-3, 6-4, A-133
prompt__f or_integer to prompt

user for integer, 6-3, 6-4,
A-133

prompt__for_string to prompt user
for string, 6-3, A-134

wait_for_input to wait for user
typed character, A-186

yesno to prompt user for yes or
no reply, 7-15, A-194

USEEJNAME
user jiame global variable with

login name, A-182

USINL.CURSOR
using_cursor to execute

statements and reset cursor,
A-182

VALUE
Sdefault for default value of

defcom numeric argument, 5-5,
5-6, 5-7

aref to return value of array
element, 3-21, A-18

get to get value for tag in
property list (plist), A-83

get_cursor to get list of all
cursor_info cursor information
values, A-83

let to bind variables to values
and execute expressions, A-100

X-67 Second Edition

EMACS EXTENSION WRITING GUIDE

VALUE (Continued)
prinl and print to display or

insert value, 3-6, 6-6, A-131
putprop to assign tag and value

to property list (plist), A-135
remprop to remove tag and value

from property list (plist),
A-141

reset_tabs to set tab stops to
default values, A-143

select to evaluate and compare
value to determine action,
4-1, 4-9, A-152

set to set an atom value, A-155
setq to assign value to atom,

3-10, A-160

VARIABLE
-local for defun local

variables, 5-17, 5-24, 5-29,
A-4

Stpass for defcom numeric
argument local variable, 5-29,
5-5, A-5

allocation and freeing of local
variables, 5-31

current_cursor variable, 7-9,
A-46

global and local variables, 5-28
global variables, 5-28
let to bind variables to values

and execute expressions, A-100
local variables, 5-16, 5-29
NL newline character global

variable, A-13
properties of a variable, 5-30
scope of a variable, 5-30
string variables containing

text, 7-13
tokenjchars global variable with

all characters in word, 5-28,
A-175

user jiame global variable with
login name, A-182

whitespace global variable with
white space characters, 5-28,
A-187

VARIANT
abortjninibuffer variant of

abort_command, A-14

VARIANT (Continued)
abort_or_exit variant of

abort_command, A-15
clearjandjsay variant of

initJLocal__displays, A-39
decimaljrep variant of

integer_to_string, A-50
displayjerrorjioabort variant of

error_message, A-59
insertjouff variant of

insertjouf, A-95
minibufferjprint variant of

infojnessage, A-113
minibuffer_response variant of

prompt, A-113
minibuf Jresponse variant of

prompt, A-112
nextjxiff variant of next_buf,

A-117
pending__reenter variant of

suppress__redisplay, A-124
rest$ variant of suffix$, A-143
sayjnore variant of

lccaljdisplayjgenerator, A-148
searchJoack_jfirst_charset__line

variant of searchJoK_inJLine,
A-150

searc+_bacK_first_not_charsetJLine
variant of verify_)oK_in__line,

A-150
search_charset_backward variant

of searchJok, A-151
searchjcharset_forward variant

of search_fd, A-151
sear cl__f or__f i rstjchar se t__line

variant of search_fdJin_JLine,
A-152

searclijfor_first_notjcharset__lirie
variant of verifyjfdjinj l ine,
A-152

searchjiot__charsetjoackward
variant of verify_bk, A-152

searcl_not_charsetJEorward
variant of verifyjEd, A-152

set_tab variant of settab, A-159
set_tabs variant of settab, A-159
wrapoff variant of filljoff,

A-191
wrapon variant of filljon, A-191
Ap_prev_line_ccjmmand variant of

prev^ine_coinmand, A-14

Second Edition X-68

INDEX

VARIANT (Continued)
~o_jquote_command variant of

quotejcommand, A-14
As_forwardJsearcj^command

variant of
forward_searci^command, A-14

VERBOSE
vld for verbose directory

listing in SUI mode, A-186

VERIFY
searchJoacK_first_not_charset_line

variant of verify_bk_in_line,
A-150

search_for_first_not_charset_line
variant of verify_fcL.in_J.ine,
A-152

search_not_charsetjoackward
variant of verifyjok, A-152

search_not_charset_forward
variant of verify_fd, A-152

verify to test string for legal
characters, A-183

verify_bk and verify_bK_in_line
to search backward for
character not in string, A-183

verifyjfd and verify_fdjin_line
to search forward for
character not in string, A-184

VERSION
insert_version to get EMACS

version number, A-96

VERTICAL
vsplit to split window

vertically into two windows,
A-186

VTEW
view_file to view a file in

read-only mode, A-185
view_kill_ring {CTRL-X} {CTRL-Z}

K to view contents of kill
buffers, 7-12, A-185

view_Jines {CTRL-X} {CTRL-Z}
{CTRL-V} to update screen on
slow terminal, A-185

yanK_kill_text {CTRL-X} {CTRL-Z}
{CTRL-Y} to insert
view_kill_ring text, 7-13,
A-192

VLD
vld for verbose directory

listing in SUI mode, A-186

VSPLIT
vsplit to split window

vertically into two windows,
A-186

WAIT
wait_for_input to wait for user

typed character, A-186

WAITJEOI_INPUT
wait_for_input to wait for user

typed character, A-186

WALLPAPER
wallpaper to insert all help

information into text buffer,
A-187

WHAT
explain {CTRL-_} C help to list

what keystroke does, 1-2

WHITE
atjwhitejchar to test if at

white space character, 4-6,
A-21

back_tojionwhite {ESC} M to move
cursor backward to nonwhite
space character, A-23

delete_white_left and
delete_white_right and
deletejwhitejsides to delete
white space, 7-2, A-55

insert_tab to insert white space
to tab stop, 7-2, A-96

leave_one_white {ESC} {SPACE} to
delete extra white space
characters, A-100

skipjoackjoverjwhite to move
cursor backward over white
space characters, 7-2, A-161

skipjoack_to_white to move
cursor backward to white space
character, 7-2, A-162

skip_over_white to move cursor
forward over white space
characters, 7-2, A-162

X-69 Second Edition

EMACS EXTENSION WRITING GUIDE

WHITE (Continued)
skip_to_white to move cursor

forward to white space
character, 7-2, A-163

whitespace global variable with
white space characters, 5-28,
A-187

whitespace_to_hpos to insert
white space to horizontal
position, A-187

white_delete {ESC} \ to delete
white space around point, A-187

WHITESPACE
entities: character, whitespace,

word, line, region, buffer,
clause, sentence, paragraph,
7-1

initjwhitespace to initialize
whitespace, 7-2

whitespace entity, 7-2
whitespace global variable with

white space characters, 5-28,
A-187

WINDOW (Continued)
other_window {CTRL-X} C to

switch cursor to other window,
A-122

redisplay to update screen
window, A-139

repaint {CTRL-X} R to move
cursor to window line, A-141

scrolljotherjoackward to scroll
other window backward, A-149

scrolljother_forward to scroll
other window forward, A-149

select_any_window {CTRL-X} 4 to
cycle through windows, A-153

splitjwindow {CTRL-X} 2 to split
window into two, A-165

splitjwindowjstay {CTRL-X} 3 to
split window into two, A-166

vsplit to split window
vertically into two windows,
A-186

window data type, A-188
window__inf o to set or get window

information, 9-6, A-188

WHITESPAOJTCLHPOS
whitespace_toJipos to insert

white space to horizontal
position, A-187

WHITEJDELETE
white_delete {ESC} \ to delete

white space around point, A-187

WINDOW
current_major_window to get

current major window, A-47
go_to_window to move cursor to

buffer of window, A-86
majorjwindowjcount to get number

of major windows, A-108
modJone_window {CTRL-X} 1 to

change multiwindow display to
one window, A-113

modjsplitjwindow {CTRL-X} 2 to
restore two window display,
A-113

nextjpage {CTRL-V} to move
window forward a group of
lines, A-118

onejwindow to change multiwindow
display to one window, A-121

WINDOWJINEO
window_info to set or get window

information, 9-6, A-188

WITHLCLEANUP
withjcleanup to execute PEEL

code and perform cleanup, A-189

WITHjODMMANDJVBORTJIANELER
wit+jjcoininandjabortJiandler to

execute PEEL code with a
cxjmmand abort handler for
errors, A-190

WITHJCURSOR
withjcursor to execute PEEL code

and reset cursor, 7-11, 7-8,
A-190

WITfLNOJREDISPLAY
with_no_redisplay to execute

PEEL code suppressing
redisplay, A-190

WORD
bacKjword {ESC} B to move cursor

backward by words, 7-4, A-24

Second Edition X-70

INDEX

WORD (Continued)
delete_word to delete words,

7-4, A-56
entities: character, whitespace,

word, line, region, buffer,
clause, sentence, paragraph,
7-1

forwardjword {ESC} F to move
cursor forward by words, A-80

lowercase_word {ESC} L to change
letters in word to lower case,
A-108

marK_endJof_word {ESC} @ to mark
end of word, 5-10, A-110.

ruboutjword {ESC} {CTRL-H} {ESC}
{backspace} {ESC} {delete} to
delete word, 7-4, A-146

token_chars global variable with
all characters in word, 5-28,
A-175

transposejword {ESC} T to invert
word positions, A-176

uppercase_word {ESC} U to
convert words to upper case,
A-182

word entity, 7-4
wrap to insert newline for word

wrapping, A-190

WRITE
modJwrite__file {CTRL-X} {CTRL-W}

to write buffer to file, A-114
write_file to write buffer to

file, A-191
writing PEEL source program

extensions, 5-1

WRITEJETLE
writejtile to write buffer to

file, A-191

YANIUO[IJJ_TEXT
yanK_Killwtext {CTRL-X} {CTRL-Z}

{CTRL-Y} to insert
view_kill_ring text, 7-13,
A-192

YANKJONIBUFFER
yanl_minibuffer {ESC} {CTRL-Y}

to insert minibuffer response,
A-192

YANILREGION
yanKjregion {CTRL-Y} to insert

killed region, A-193
yanKjreplace {ESC} Y to replace

yanKjregion text, A-193

WRAP
fill_endJtoken_insert__left and

fill_endJtoken_insert_pfx to
wrap to fill column and insert
command characters, A-70

wrap to insert newline for word
wrapping, A-190

wrap_line_with_prefix to specify
wrap column and prefix string,
A-191

WRAPOFF
wrapoff variant of fill_off,

A-191

WRAPON
wrapon variant of filljon, A-191

WRAPJLDflE_WITH_FREETX
wrap_line_withjpref ix to specify

wrap column and prefix string,
A-191

YANKJREPLACE
yanK_replace {ESC} Y to replace

yanKjregion text, A-193

YES
yesno to prompt user for yes or

no reply, 7-15, A-194

YESNO
yesno to prompt user for yes or

no reply, 7-15, A-194

abbreviation for "not", 4-8,
A-14

<r <-r -r *-r >r >- relation
operators, 4-8, A-ll

vP_j7REV_L]NE_CDMMAND
*p_prevJLine_command variant of

prev^ine_command, A-14

X-71 Second Edition

EMACS EXTENSION WRITING GUIDE

wQJ3UOTEJO0MMAND
*qjc_uote_cx>mmand variant of

g^iote_command, A-14

NS__TOFWARDJSEARC3L-CDMMAND
~s_forwardJsearch_command

variant of
forwardjsearchjcommand, A-14

abbreviation for "or", 4-8,
A-14

S e c o n d E d i t i o n X - 7 2

SURVEY

r

r

r
r

READER RESPONSE FORM

DOC5025-2LA EMACS Extension Writing Guide

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

e x c e l l e n t v e r y g o o d g o o d f a i r p o o r

2. Please rate the document in the following areas:

Readability: hard to understand average very clear

Technical level: too simple about right too technical

Technical accuracy: poor __average very good

Examples: too many about right too few

Il lustrat ions: too many _about r ight too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

N a m e : P o s i t i o n :

Company:
Address:

Zip:

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications
Bldg 10B
Prime Park, Natick, Ma. 01760

	Front Cover
	Title Page
	i
	Copyright
	ii
	Printing History
	iii
	Contents
	v
	vi
	vii
	viii
	About This Book
	ix
	x
	xi
	Chapter 1
	Introduction
	1-1
	1-2
	1-3
	1-4
	Chapter 2
	Creating, Transforming, and Binding Extensions
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	Chapter 3
	Elementary PEEL Programming
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	Chapter 4
	Logic and Looping
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	Chapter 5
	Writing Extensions
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	Chapter 6
	Interactive I/O
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	Chapter 7
	Manipulating Text Buffers
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	Chapter 8
	Modes
	8-1
	8-2
	8-3
	8-4
	Chapter 9
	Information Commands
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	Appendixes
	Appendix A
	EMACS Functions and Commands
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	A-53
	A-54
	A-55
	A-56
	A-57
	A-58
	A-59
	A-60
	A-61
	A-62
	A-63
	A-64
	A-65
	A-66
	A-67
	A-68
	A-69
	A-70
	A-71
	A-72
	A-73
	A-74
	A-75
	A-76
	A-77
	A-78
	A-79
	A-80
	A-81
	A-82
	A-83
	A-84
	A-85
	A-86
	A-87
	A-88
	A-89
	A-90
	A-91
	A-92
	A-93
	A-94
	A-95
	A-96
	A-97
	A-98
	A-99
	A-100
	A-101
	A-102
	A-103
	A-104
	A-105
	A-106
	A-107
	A-108
	A-109
	A-110
	A-111
	A-112
	A-113
	A-114
	A-115
	A-116
	A-117
	A-118
	A-119
	A-120
	A-121
	A-122
	A-123
	A-124
	A-125
	A-126
	A-127
	A-128
	A-129
	A-130
	A-131
	A-132
	A-133
	A-134
	A-135
	A-136
	A-137
	A-138
	A-139
	A-140
	A-141
	A-142
	A-143
	A-144
	A-145
	A-146
	A-147
	A-148
	A-149
	A-150
	A-151
	A-152
	A-153
	A-154
	A-155
	A-156
	A-157
	A-158
	A-159
	A-160
	A-161
	A-162
	A-163
	A-164
	A-165
	A-166
	A-167
	A-168
	A-169
	A-170
	A-171
	A-172
	A-173
	A-174
	A-175
	A-176
	A-177
	A-178
	A-179
	A-180
	A-181
	A-182
	A-183
	A-184
	A-185
	A-186
	A-187
	A-188
	A-189
	A-190
	A-191
	A-192
	A-193
	A-194
	Appendix B
	Command Cross-reference List
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	X-18
	X-19
	X-20
	X-21
	X-22
	X-23
	X-24
	X-25
	X-26
	X-27
	X-28
	X-29
	X-30
	X-31
	X-32
	X-33
	X-34
	X-35
	X-36
	X-37
	X-38
	X-39
	X-40
	X-41
	X-42
	X-43
	X-44
	X-45
	X-46
	X-47
	X-48
	X-49
	X-50
	X-51
	X-52
	X-53
	X-54
	X-55
	X-56
	X-57
	X-58
	X-59
	X-60
	X-61
	X-62
	X-63
	X-64
	X-65
	X-66
	X-67
	X-68
	X-69
	X-70
	X-71
	X-72
	Survey
	
	

