Prime Computer, Inc.

DOC5025-2LA

EMACS Extension
Writing Guide
Revision 19.4




Y

EMACS Extension Writing
Guide

Second Edition

by
Barry M. Kingsbury

and

John Xenakis

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 19.4 (Rev. 19.4).

Prime Computer, Inc.
Prime Park
Natick, Massachusetts 01760



COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc. assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1986 by
Prime Computer, Inc.
Prime Park
Natick, Massachusetts 01760

PRIME, PRIME, and PRIMOS are registered trademarks of Prime Computer,
Inc.

PRIMENET, RINGNET, Prime INFORMATION, MIDASPLUS, Electronic Design
Management System, EDMS, PDMS, PRIMEWAY, Prime Producer 100,
INFO/BASIC, PST 100, PW200, DPwWl50, 2250, 9950, THE PROGRAMMER'S
COMPANION, and PRISAM are trademarks of Prime Computer, Inc.

CREDITS
Editor Herbert Korn
Technical Support Peter Neilson
Project Support Phil Fulchino
Production Support Judy Gordon
Document Preparation Mary Mixon

ii

J



b

PRINTING HISTORY — EMACS EXTENSION WRITING GUIDE

Edition Date Number Software Release
First Edition March 1982 IDR5025 18.3
Seocond Edition January 1986 DOC5025-2LA 19.4

In document numbers, L indicates loose-leaf.

QUSTOMER SUPPORT CENTER

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

HOW TO ORDER TECHNICAL DOCUMENTS

Follow the instructions below to obtain a catalog, price 1list, and
information on placing orders.

United States Only International
Call Prime Telemarketing, Contact your local Prime
toll free, at 800-343-2533, subsidiary or distributor.

Monday through Friday,
8:30 a.m. to 8:00 p.m. (EST)

iii



\

\

ABOUT THIS BOOK

INTRODUCTION

Finding Information

The Relationship Between PEEL,
EMACS, and Your Commands

How to Find Out What a Statement
Does

LISP

CREATING, TRANSFORMING, AND BINDING
EXTENSIONS

Creating a Keyboard Macro
Converting a Macro Into a
PEEL Source Code Extension
Using PEEL Source Code
Making the New Command
Available to EMACS
Saving Source Code in a File
Creating PEEL Source Libraries
Binding an Extension to a Key
Rey Path Conventions
Control Characters in Key Paths
Letter in a Key Path
Key Binding Within Local
Buffer Only
Adding Key Binding to a PEEL
Source Library
EMACS Fast Load (EFASL) Files
File Naming Conventions
Loading Extensions: Library
Management
Summary of Steps for Creating
Extensions
What is Next

Contents

ix

1-1
1-3

1-4
1-4

2-3
2-6

2-7
2-7
2-8
2-8
2-9
2-10
2-11

2-11
2-11
2-12
2-13
2-13

2-14
2-15



3 ELEMENTARY PEEL PROGRAMMING

PEEL as a Programming Language
Elements of List Processing
Atoms
Integer and String Atoms
Lists
Nested Lists
Symbolic Expressions
(S-Expressions) and Forms
Evaluation of S-Expressions
How to Execute PEEL Programs
Output From PEEL Programs
The Value of an S-Expression

Evaluating S-Expressions: Effect

and Side-effect
Assignments
The Setq Function
The Quote (') Operator
Eval Function
PEEL Data Types
Arithmetic Operations
Addition and Multiplication
Subtraction and Negation
Incrementing or Decrementing
by One
Division and Modulo
Forms and Nested Statements
ARRAYS
Creating an Array
Assigning Values to an Array
Filling All or a Portion of
an Array
Referencing an Array
Arrays of Other Data Types
Arrays With Multiple Names
Releasing Storage Allocated
to an Array
Other Array Functions
Functions That Manipulate
Lists
Referencing Lists
Forming Lists
Pulling Apart Lists

4 IOGIC AND LOOPING

Looping
Looping With Arrays
Decision Statements
The If Form
Buffer Conditions

vi

J



D)

)

b

Action Conmands

Boolean and Relational
Operators

The Select Statement

The Dispatch Statement

5 WRITING EXTENSIONS

The EMACS/PEEL Environment
The Defcom Function
Inserting a Documentation Line
Argument Handling With Defcom
Using Numeric Argument as a
Repeat Factor
Passing the Numeric Argument
to a Variable
Specification for &na
Prompting for an Argument Value
Specifications for &args
Format of Defcom
Further Examples
The Defun Function
Format of a Simple Defun
Function Without Arguments
Function With a Single Argument
Functions With Several Arguments
Function With a Single
Optional Argqument
Functions With Some Required
and Some Optional Arguments
Local Variables
Functions That Return Values
Another Example of &returns
Format of Defun
Combining Defcom Commands With
Defun Functions
PEEL Data Types
Global and Local Variables
Global Variables
Local Variables
Properties of a Variable
Scope of a Variable
Separation of Functions
Allocation and Freeing of
Local Variables
Recursion
Recursive Definition of Factorial
Factorial Command and Function

vii

4-7

4-9
4-11

11 ] {
~Noy oo W wWWwN -

1
==

N



6 INTERACTIVE I/O

The Minibuffer
How to Write to the Minibuffer
Prompting
Read Functions
Conversion Routines
Writing Over the Text Area
Debugging PEEL Programs

7 MANIPULATING TEXT IN BUFFERS

Characters

Whitespace

Words

Lines

Clauses

Sentences

Regions

Cursors
Copying Text
Deleting Text From a Buffer
Inserting Text Into the Buffer
Working With Text Contained

in Variables

8 MODES
Modes Defined
Binding Mode Functions and
Commands
9 INFORMATION COMMANDS
BUFFER_INFO
DISPATCH_INFO
FILE_INFO
WINDOW_INFO
Other Information Commands
APPENDIXES
A EMACS FUNCTIONS AND COMMANDS
B COMMAND CROSS-REFERENCE LIST

INDEX

viii

6-2
6-2
6-3
6-4
6-5
6-6
6-7

7-2
7-2
7-4
7-4
7-5
7-6
7-7
7-11
7-12
7-13

7-13

B-1

X-1

Y



3

About
This Book

This book shows you how to write commands and functions that extend the
capabilities of the EMACS editor. If you are not familiar with the
concept of a programmable editor, you may not appreciate the full
capabilities that you now have at your fingertips. You no longer have
just a text editor. Instead, you now have a tool for creating editors.
This means that you can restructure the way EMACS looks, what it does,
and how it acts on text.

If you are not familiar with the EMACS editor, you should read the
EMACS Reference Guide (IDR5026) and its three update packages
(PTU2600-105, PrU2600-107, and UPD5026-31A) before reading this book.
This book assumes familiarity with the EMACS commands discussed in the
EMACS Reference Guide. If you are not familiar with these commands,
much of the information presented here will not make sense.

The language used to write EMACS commands and functions is called the
Prime EMACS Extension Language (PEEL). Although PEEL is designed to
operate on textual information, it oontains everything necessary to
write complete functions. Because these functions are only usable
within EMACS, they serve to extend the capabilites of the editor.

As EMACS exists, it has many commands. Why is there a need to write
more commands? Even though EMACS has most of the commands you might
want, there are many situations where you want to perform actions based
on particular information in the text. 1In other cases, you may want to
adapt commands to some special organization in a text file. In
addition, you can use the extension language to put together commands
that talk to the PRIMOS® operating system.

ix



The best way to learn how PEEL works is to examine real programs that
do real operations. Consequently, the majority of the examples in this
book are taken from the library functions in EMACS*>EXTENSIONS. In
addition, you should look at the code in these libraries to see how the
elements of a PEEL program fit together. Another important purpose of
reading the programs in EMACS* is that you will gain an appreciation of
the kinds of actions that must be performed in a string processing
program.

This book assumes that you are an experienced programmer. While PEEL
concepts are explained, no attempt is made to explain programming. If
you know the LISP language, you already know the structure of PEEL.
PL/I and PASCAL programmers will also be familiar with many of the
concepts presented here.

Even though PEEL is a relatively new and unfamiliar language,
experience has shown that PEEL rivals BASIC in its simplicity.

HON TO USE THIS BOCK

The book is divided into two parts. The first part, Chapters 1 through
9, is a discussion of how to write extensions. The second part,
Appendixes A and B, is a reference list of PEEL statements.

Chapters 1 and 2 introduce the PEEL language and discuss PEEL's
strengths and limitations, the EMACS enviromment, compilation, and the
binding of functions into the envirorment. The last topic is presented
in the context of keyboard macros, which were discussed in the EMACS
Reference Guide.

Chapters 3 and 4 discuss arithmetic functions, such as multiplication
and division, and control statements, such as if, do, and select.

Chapter 5 puts together the information presented in Chapters 1 through
4 so that you can begin creating functions and commands. Other topics
discussed are the command environment, data typing, transferring
information between programs, and recursion.

Chapters 6 and 7 discuss the two forms of I/0 available in EMACS: file
(buffer) 1/0 and interactive I/0. Chapter 6 discusses how a program
communicates to a user and how a user communicates back to a function.
Chapter 7 looks at how information is altered, removed, and modified in
a buffer. Of particular importance is the second half of Chapter 7,
which explains cursors.

Chapters 8 and 9 discuss two advanced topics. Chapter 8 examines
modes, which are a way of changing command definitions on a temporary
basis. Chapter 9 1looks at the information that EMACS keeps track of
while it is executing.

)

J



‘

Appendix A is an alphabetical listing of all built-in functions and
commands of EMACS, as well as the majority of functions and ocommands
contained in the libraries in EMACS*>EXTENSIONS.

Appendix B is a cross—reference listing of the information presented in

Appendix A. Commands and functions are grouped by what they do in
order to help you find the information that you need.

xi



b

Introduction

The EMACS text editor provides a large and powerful command structure
that can meet the needs of a wide range of users. Beginners can
quickly learn a subset of commands that will help them perform most of
the tasks needed to edit a file. More experienced users can draw upon
the entire command vocabulary and use the full power of EMACS.

Whenever you use a text editor, you are performing the actions that
someone thought would be appropriate for what you have to do.
Consequently, the editor may lack features that would make editing
sessions easier for you. In addition, you can only manipulate the
kinds of things the designer thought should be manipulated and only in
the way the designer intended. As discussed in the EMACS Reference
Guide, the EMACS editor also appears to have these limitations.
However, the information contained in this book shows you how to
customize EMACS so that it meets your expectations and your needs.

FINDING INFORMATION

As you will see, the programming language used to write new commands is
very rich. Because the programming language, PEEL, has been designed
to manipulate textual information, its statements are tailored to the
kinds of things found in text. For example, statements exist for
manipulating words, sentences, and paragraphs.

1-1 Second Edition



EMACS EXTENSION WRITING GUIDE

Because PEEL is a large language, it usually offers a variety of ways
to do the same thing. (All the PEEL statements are listed in Appendix
A.) However, you never have to guess what the best way to program an
operation is. EMACS has three commands to help you find the
information you need.

Command Command Name Function

{CIRL-_} A  Apropos Lists all commands related to an
operation.

{CTRL-_} C Explain Lists what a keystroke does.

{CTRL-_} D  Describe Lists textual information about

commands and PEEL statements.
Let's look at how you would use these commands.

Example 1: Apropos

Suppose you want to move the cursor forward and you want to see
which commands perform forward movement. You would type {CT'RL~_} A
followed by the word "forward". EMACS will list all commands that
have the word "forward" in it.

Example 2: Explain

Suppose you want to write a command that, among other things, moves
point (the current cursor) forward one character. As you know, the
keystroke {CTRL-F} moves point forward. Typing {CTRL-_} C, then
typing {CTRL-F} tells you that the internal name for that keystroke
is forward_char.

Example 3: Describe

Suppose that after EMACS lists a command, you want to obtain more
information. If you type {CTRL-_} D followed by the command name,
EMACS prints the information you need.

The describe ocommand, {CTRL-_} D, also lists the built-in functions of
EMACS. For example, it lists the forward_search furiction, which is not
available at command level. As you leam to program in PEEL you will
find that describe is. one of your best helpers. To learn more about
describe, type ? while in describe.

Second Edition 1-2

J



INTRODUCTION

THE RELATIONSHIP BEIWEEN PEEL, EMACS, AND YOUR COMMANDS

In a traditional programming enviromment, the end result is a unit of
code that can be invoked from PRIMOS. However, the commands that you
write in PEEL can only be executed within EMACS. This is because all
the commands you write are dependent on PEEL statements that only exist
within the EMACS environment. Also, EMACS is an interpreter, not a
compiler. Consequently, its ocode is never designed to be
self-contained.

The PEEL statements are, in many respects, similar to statements in
other languages. For example, here is the statement for moving forward
a character:

(forward_char)

Notice the parentheses and the statement text. The way PEEL uses
parentheses is identical to the way LISP uses them. If you have not
programmed in LISP, you may find that entering parentheses before and
after statements is awkward. For example, the following is PEEL's
equivalent of a do loop:

(do_n_times ocount
(forward_char))

Notice that this statement ends with two parentheses. (This example
moves the current cursor forward the number of positions indicated by
count.) Thus you can understand why, as statements become nested
within statements, it becomes easy to lose track of which opening
parenthesis belongs to which closing parenthesis.

EMACS can help you out of this difficulty. Type the following command:

{ESC} X lisp_on

This invokes the LISP programming mode. The most important command in
LISP mode redefines the closing parenthesis so that EMACS momentarily
jumps to the corresponding open parenthesis. This shows you if you
have entered parentheses correctly.

One way to understand how EMACS and the commands you write relate is to
think of EMACS as if it were the main module in a FORTRAN or PL/I
program. Then all the functions and commands that you write can be
thought of as being subroutines of this EMACS main module.

After you write a command and bring it into the EMACS enviromment, as

is discussed in the next chapter, that ocommand is indistinguishable
from the fundamental commands supplied with EMACS.

1-3 Second Edition



EMACS EXTENSION WRITING GUIDE

HOW TO FIND QUT WHAT A STATEMENT DOES

Whenever you are in EMACS, you have the full capability of PEEL
available at all times. As is described in Chapter 2, you can tell
EMACS to interpret a command or file. The contents of the file or the
command are then available. In addition, you can have EMACS directly
execute PEEL statements at any time, causing the specified action to be
performed immediately. You can use this fact to help see what a
function does. To invoke the programming language, type {ESC}{ESC}.
EMACS will respond with the prompt PL: (for programming language).
You can now type a statement (or series of statements). When you type
a carriage return, EMACS executes the PEEL statements.

As an example, suppose you want to write a command that, in part, moves
the current cursor, or point, back to a previous space. EMACS contains
the statement "skip back_to_white". The question you might have is
where does this leave point? Is it left so that the white space is
immediately after point or before point? To find out, type {ESC}{ESC}
while in the middle of a file, then type:

(skip_back_to_white)

In this way, if you are unsure about something, you can find out.

LISP

PEEL not only shares the format of LISP, it contains many elements of
the LISP language. However, it is not a fully developed LISP language.
For the most part PEEL merely contains the basic primitives necessary
for creating, examining, and taking apart lists. (These statements are
listed in Appendix B.) If you do not know LISP, you will not be able
to use these functions. Fortunately, for the most part you can get by
very easily without these functions. For example, more than 95% of all
functions in the EMACS libraries make no use of these basic list
statements.

If you have heard anything about LISP, you know that it is a language
designed for processing lists. Because most programmers are more
familiar with arrays, PEEL lets you use arrays in the same manner as
traditional programming languages. Thus, with PEEL, there is little
need to use lists if you do not want to.

In other words, you can write all the extensions you want without
knowing anything about LISP.

If you want to leam more about LISP, read:
Winston, Patrick Henry and Horn, Berthold Klaus Paul. LISP,

second edition. Reading, Mass.: Addison-Wesley Publishing
Company, 1981, 1984.

Seoond Edition 1-4

/

J



Creating,
Transforming, and
Binding Extensions

This chapter discusses the following:
e Creating a macro
e Converting a macro into a PEEL source code extension
e Using PEEL source code
-~ Saving source code in a file
- Creating PEEL source libraries
e Binding an extension to a key
- Key path conventions
- Control characters in key paths
- Letters in a key path
- Key binding within local buffer only
- Adding key binding to a PEEL source library
e EMACS fast load (EFASL) files
— File naming conventions

e Loading extensions (library management)

2-1 Second Edition



EMACS EXTENSION WRITING GUIDE

The easiest way to create an extension, aside from having someone else
write it for you, is to have EMACS write it. The extensions that EMACS
can write are the keyboard macros discussed in the EMACS Reference

Guide. This chapter reviews the steps involved in creating a Kkeyboard
macro, demonstrates the steps involved in transforming a keyboard macro
into an extension, points out some of the limitations of this method,
and shows how an extension is bound into EMACS. This binding procedure
is the same one you use when writing your own extensions.

Note

The section titled LOADING EXTENSIONS: LIBRARY MANAGEMENT in
this chapter tells you how to create and manage libraries of
extensions. It also explains the best way to install new
commands .

CREATING A KEYBCARD MACRO

Let's begin by looking at the simplest way to use EMACS's macro
capability. Suppose, for example, you want to perform the same set of
keystrokes over and over. You can tell EMACS to save that set of
keystrokes and then have them executed again and again by means of a
single EMACS command.

Suppose you wish to move the cursor to the right three positions, then
insert the period character (.) into the text buffer. You would type
the following:

{CTRL-F} {CTRL-F} {CTRL-F} .

Now suppose you wish to do this over and over again. You tell EMACS to
"learn" this sequence of keystrokes and then to repeat the sequence
whenever you desire.

To tell EMACS to "learn" a sequence of keystrokes, type the following:

{CTRL—X} (

This command tells EMACS to begin learning. From that point on, any
keystrokes you type will be remembered for future use. EMACS will
continue remembering keystrokes until you type the following:

{CTRL-X} )

Second Edition 2-2

J



b

CREATING, TRANSFORMING, AND BINDING EXTENSIONS

This command tells EMACS that the keystroke sequence definition is
completed.

To combine the example above (moving the cursor right three positions

and inserting a dot) with this method of remembering sequences of
keystrokes, you would type the following: '

{CrrRL—X} ( {CTRL-F} {CTRL-F} {CTRL-F} . {CTRL-X} )
The four keystrokes between the {CTRL-X} ( and {CTRL-X} ) are saved,

ready for reexecution whenever you request it.

The way you request it is by typing the following:
{CTRL-X} E
This command tells EMACS to reexecute whatever keystrokes were saved by

the commands {CTRL-X} ( ... {CTRL-X} ).

You can also supply a numeric argument in order to specify repeated
execution of the saved keystrokes. For example:

{ESC} 5 {CTRL-X} E

This command specifies that the saved keystrokes are to be executed
five times.

Note that this method of saving and reexecuting keystrokes works with
only one set of keystrokes at a time. If you use {CTRL-X} ( and
{CTRL-X} ) again, the new keystroke definition will overwrite the
previous one.

If you are in the habit of using fill mode, you should turn that mode
off in any buffer in which you are creating macros, so that words at

the end of one line will not spill over into the next line. Therefore,
before creating a macro, type the following:

{ESC} X fill_off

CONVERTING A MACRO INTO A PEEL SCURCE QODE EXTENSION

The method of defining a macro we have just described can be used to
define only one macro at a time; if you define a new macro, you erase
the definition of the old macro.

2-3 Seocond Edition



EMACS EXTENSION WRITING GUIDE

Obviously, you need a method for defining and saving many macro
definitions. To do this, you must save the macro definition in terms
of PEEL source code. EMACS provides a simple method for oconverting a
keystroke sequence macro into PEEL source code. However, before using
this method, you must create a new EMACS buffer into which you will
place the source oode. The easiest way to do this is to create a new
file using the following command:

{CTRL-X} {CTRL-F}

This command prompts you for the name of a file. You should choose a
filename of the form "name.EM". As we will see, the ".EM" suffix is
the standard one for PEEL source code files. (Of course, you can
create a new buffer without creating a new file. To do that, use the
{CTRL-X} B command.)

Once you are within the buffer for the file you are creating, you are
ready to load into that buffer the source oode for the keystroke
sequence macro you have created. To do so, type the following command:

{ESC} X expand_macro

EMACS prompts you for the name of the macro, converts the macro into
PEEL source oode, and places the source code in the new buffer. For
the name of the macro, you should choose a name that will be easy to
remember, since you will be using that name in the future when you wish
to invoke the macro.

For Standard User Interface (SUI), you may press the Command key
instead of using {ESC} X.

Suppose you have used the keystroke sequence described previously, and
have given it the name "tx". Then the following source code will
appear in the buffer:

(defcom tx
(do_n_times (numeric_argument 1)
(forward_char)
(forward_char)
(forward_char)
(self_insert \.)
))

Second Edition 2-4

J

J



9y

CREATING, TRANSFCRMING, AND BINDING EXTENSIONS

While it is not yet necessary for you to understand this source oode,
the following points will give you the idea of what it is doing:

e The basic format is:
(defcom name (action))

defcom is the keyword which defines a new command; name is the
name of the command you are defining (tx in the example above);
and action is the action to be performed when the command is
invoked.

e The first line of the action portion of the command is:
(do_n_times (numeric_argument 1)

Notes

1. This line contains an unmatched left parenthesis —— the
matching right parenthesis is on the last line of the
PEEL source code.

2. As we shall see in a later chapter, there is a way to
supply a numeric argument when invoking the tx command
you have just defined. (Recall that the discussion of
the {CTRL-X} E command, earlier in this chapter, shows
how to supply a mumeric argqument to specify repeated
execution.) The line above uses that numeric argument,
if supplied, to control the number of times that the
specified action will be performed.

The line above has two parts. The first, "do_n_times", defines
a PEEL loop. The action following it is to be performed the
number of times specified by the second part of the line,
" (numeric_argument 1)".

This is a PEEL function that has the value of the numeric
argument (if any) specified with the tx command when it is
invoked. Thus, if you invoke tx with no argument, the action
you have specified is executed exactly once.

® Each of the next three lines contains the following code:

(forward_char)

2-5 Second Edition



EMACS EXTENSION WRITING GUIDE

This is a PEEL function, oorresponding to the keystroke
{CTRL-F}, which moves the current cursor (point) ahead one
character in your buffer.

® Next comes the line:

(self_insert \.)

This function inserts a period at the current point. It is the
PEEL equivalent of typing a period at your keyboard to insert
that character into your buffer.

e The last line contains two right parentheses. These parentheses
match the two unmatched left parentheses in the first two lines
of the source code.

The meaning of the PEEL source code will be explained in greater detail
in later sections. For now, you should be satisfied with the gist of
how the source code works.

Once you have inserted the source oode into the buffer, you should

write the buffer out to the file you specified. You do this by means
of the following command sequence:

{CTRL-X} {CTRL-S}

This command sequence, which corresponds to SAVE FILE in the Standard
User Interface, saves the buffer in a file defined by the current
pathname.

USING PEEL SOURCE CODE

If you have been following our example, you have now done the
following:

1. Used {CIRL-X} ( and {CIRL-X} ) to define a keystroke sequence
2. Used {CrRI-X} {CTRL-F} to create a new buffer and file

3. Used {ESC} X expand_macro to convert the macro you have defined
into PEEL source code

4., Used {CTRL-X} {CTRL-S} to save the PEEL source code in the file
However, none of these steps make the new tx command available to you.

Of course, until you define a new macro using {CTRL-X} (and {CI'RL—X}_),
you can ocontinue to use {CTRL-X} E to execute the macro again.

Second Edition 2-6

)



)

CREATING, TRANSFORMIMG, AND BINDING EXTENSIONS

However, we are talking about a way to make the command known to EMACS
so that you don't have to worry about overwriting it.

Making the New Command Available to EMACS

The method requires two steps. First, type the following:

{ESC} X pl

This command tells EMACS to use the PEEL source code in the current
buffer to make any command definitions a part of EMACS for the current
EMACS session. (The letters "pl" stand for "programming language".)
Thus, after executing this command, tx is available as an EMACS command
for the current EMACS session.

Then, to use the command, just type:
{ESC} X tx
For the Standard User Interface, type Command tx.

Now anytime you use this ocommand during your editing session, EMACS
will move the cursor right three characters and insert a period.

Saving Source Code in a File

The pl command we have just been discussing causes EMACS to compile and
execute the PEEL source code in your current buffer. In the example
above, the current buffer contains PEEL source code for a defcom, or
command definition, of the command named tx. Therefore, compiling and
executing this source oode makes the tx command available to EMACS.
However, the command is lost when you exit EMACS.

If you plan to use the same commands in session after session, you
should save the source oode in a file, and then compile and execute
that file at the beginning of each session. To save the code, use
{CTRL—X} {CTRL-S} as discussed above, or use {CTRL-X} {CTRL-W} to
create a new file.

To compile and execute the source code in a file, you use the following
command :

{ESC} X load_pl_source

2-7 Second Edition



EMACS EXTENSION WRITING GUIDE

After you type this command, EMACS prompts you for a pathname of a PL
source file. After you type the pathname, EMACS finds the file, then
compiles and executes it. At that point, your saved command is
available.

It may interest you to know that the command we have just discussed
loads the source code into a buffer named ".pl". If you use the
list_buffers command, {CTRL-X} {CIRL-B}, you will see this buffer
listed.

Creating PEEL Source Libraries

If desired, you may create a file containing the PEEL source code for
many commands similar to the ones illustrated above. Each time you use
the expand_macro command, EMACS inserts your latest command definition
into the current buffer. Thus, you can insert as many of these
commands into the same buffer as you wish, and store them all in the
same file,

If you start your next EMACS session with the 1load_pl_source command,

all the commands you have defined in the source file you specify will
be available to you in that session.

BINDING AN EXTENSION TO A KEY

If you have been trying out the example so far, then you have created a
source file defining one or more new command names. To invoke one of
these commands, you must use {ESC} X followed by the name of the
command.

Frequently, it is more convenient if you redefine same of your keyboard
command keys to correspond to the oommands you have defined. For
example, suppose you want the backslash key (\) to correspond to the tx
command. To do so, type the following:

{ESC} X set_permanent_key

EMACS prompts you for a key path. 1In reply you press the backslash
key, as follows:

Key Path: \

Second Edition 2-8



A

CREATING, TRANSFORMING, AND BINDING EXTENSIONS

Next, EMACS prompts you for the command name. In reply, you type the
command name tx, as follows:

Command Name: tx

This sequence of commands causes EMACS to "bind" the backslash key to
the tx command. Thus, from this point on, whenever you press the
backslash key, EMACS automatically executes the tx command.

Note

In binding a key to a command, you are doing something that is
fairly common within EMACS. For example, the {CTRL-F} key is
automatically bound to the forward_char command whenever you
invoke EMACS. That is why {CTRL-F} moves the cursor one
character forward. However, you can almost always overwrite an
existing binding by binding the same key sequence to a new
function.

Key Path Conventions

The last example bound a single key, \, to the tx command. You also
may bind entire strings of keys to given commands. This allows you to
put keystrokes together in a variety of ways to define as many commands
as you wish.

For example, suppose you invoked the set_permanent_key command as
described above, with the same command name, tx, but specified the key
path as follows:

Key Path: #%

You would be specifying that these two keystrokes together, #%, are
needed to invoke the tx oommand. Similarly, you oould bind such
keystroke combinations as #+ or #$ to other commands that you have
defined.

Any such string of keystrokes bound to a command is called a key path.
You may have up to and including 10 keystrokes in a key path. ~Although
any sequence of keystrokes may be used, a sequence beginning with
control or escape characters is recommended to avoid losing the normal
meaning of other characters.

2-9 Second Edition



EMACS EXTENSION WRITING GUIDE

Caution

In the examples above it would not be correct to bind the pound
sign (#) alone to a function, because that would interfere with
its use in the key path pairs #%, #+ and #S$. Similarly, the
bindings of the prefix keys {ESC} and {CTRL-X} should never be
changed, because that would prevent many of the standard EMACS
commands from working.

Control Characters in Key Paths

To specify ocontrol characters in a key path, you must use special
symbols. (Note that {ESC} is a control character, equivalent to
{CTRL.-[}.) These special symbols are as follows:

“x for {CTRL-x}
[ for {ESC}
- for ~

~“cx for {CTRL~-x}

The first and last lines of this table are for specifying the control
code corresponding to any letter on the keyboard. For example, the
character {CTRL-A} may be specified either as "A or “cA. (A few
teminals do not have a = symbol. Most of these teminals have an up
arrow key (4) instead.)

Caution

Many terminals have both the * key and the up arrow key. If
both are present, be careful to distinguish between these two
keys.

For further information on specifying oontrol characters, see the
Escape Sequences entry in Appendix A. See also the quote_command
function in Appendix A. This function helps you bind a command to a
function key without knowing the keypath of the function key. However,
you must still change the resulting sequence in your oode to reflect
the conventions in the preceding table.

Second Edition 2-10



CREATING, TRANSFORMING, AND BINDING EXTENSIONS

Letter in a Key Path

When a key path contains a letter, EMACS distinguishes between
uppercase and lowercase letters. For example, the key path "[A creates
a binding to {ESC} A. It does not create a binding to {ESC} a. If
you wish to create both bindings, you must invoke the set_permanent_key
command twice, specifying the key path "[A the first time and “[a the
second time.

Key Binding Within Local Buffer Only

EMACS permits you to define a key binding that is valid only within the
buffer that was active when you invoked the key binding command. To
perform this kind of binding, use the set_key command rather than the
set_permanent_key command. Except for that change, everything we have
discussed is the same.

The set_key command is generally not very useful. In most cases, you
should use set_permanent_key.

Adding Key Binding to a PEEL Source Library

Previously, you learned how to create a source file oontaining PEEL
command definitions, and then how to load, compile, and execute that
command at the beginning of each EMACS session so that the commands
defined become available during your session. You now must learn how
to add to that source file so that your key bindings also are
automatically defined.

To bind a key path to a command, insert the following command sequence
at the end of your PEEL source file:

(set_permanent_key "key path" "command")
You may add as many of these lines as you need to bind different Kkey
paths to different commands.
For example, to specify that the key path {ESC} A is to be bound to the

command tx, you would type the following at the end of your PEEL source
file:

(set_permanent_key ""[A" "tx")

In future EMACS sessions, when you use the load_pl_source command to
load your PEEL source, the keystroke bindings you have specified will
be automatically defined and available for the sessions.

2-11 Second Edition



EMACS EXTENSION WRITING GUIDE

Remember that you may use the set_key command as well as the
set_permanent_key command in your source file. However, set_key
commands normally would be completely useless because the keystroke
bindings would be available only in the .pl buffer containing the
source file. '

EMACS FAST LOAD (EFASL) FILES

We have been discussing how to create a source file of PEEL commands
and how to load that source file when you start a new EMACS session.
Now we are going to take that process one step further.

If you had a large source library oontaining many command definitions,
it would take a long time to load and compile that source file each
time you began an EMACS session. Therefore, EMACS provides a way for
you to save that file in a compressed form, so that it can be loaded
much more quickly when you begin a new session.

The compressed command file is called an EMACS fast load file, and it
always has a .EFASL suffix.

Suppose that your PEEL source file has the name MYPEEL.EM. (As stated
earlier in this chapter, it is standard practice that a PEEL source
file should have a .EM suffix. You will see why this is important in a
few paragraphs.)

First, you should load the source file into an EMACS buffer with the
find_file command, as follows:

{CTRL-X} {CTRL-F} MYPEEL.EM

Notice that this command does not compile and execute the source file;
it simply loads it into a buffer. Of course, you could now compile and
execute it with the {ESC} X pl command. Instead we are going to
compress and save the source file by typing the following command:

{ESC} X dump_file
EMACS compresses the source file and stores the result into the file

MYPEEL. EFASL.

Although EMACS has now compressed the source file, the commands c_iefined
in the file are still not available to EMACS. To make them available,
you must load the partially compiled file with the following command :

{ESC} X load_compiled

Second Edition 2-12



b

CREATING, TRANSFORMING, AND BINDING EXTENSIONS

This command prompts you for a file name. Respond by typing MYPEEL, so
that the minibuffer at the bottom of your screen reads as follows:

Fasdump file name: MYPEEL

(It is an error to type MYPEEL.EFASL.) If the file is not 1located in
your current directory, you can type an entire path name, without the
.EFASL suffix.

The dump_file command, which compresses a source file and dumps the

result to a file, performs what is known as a fasdump operation, while
the load_compiled command performs a fasload operation.

File Naming Conventions

When you use the dump_file command, the name of the file created by
EMACS depends upon the name of your source file in your current buffer
and whether that source file name has a .EM suffix.

o If the source file has a .EM suffix, then EMACS simply removes
that suffix and replaces it with the .EFASL suffix. For
example, as we have just seen, if the source file name is
MYPEEL.EM, then the dump file name is MYPEEL.EFASL.

e If the source file name does not have a .EM suffix, EMACS simply
adds the .EFASL suffix. For example, if the source file name is
MYPEEL, then the dump file name would be MYPEEL.EFASL.

Note that in all the commands that we have discussed, you never

actually type the .EFASL suffix. In all cases, EMACS automatically
supplies it.

LOADING EXTENSIONS: LIBRARY MANAGEMENT

Once you have created a fasload file, you can cause EMACS to load that
file automatically at the beginning of each EMACS session. For
example, to load the file MYPEEL.EFASL, you would type the following:

EMACS filename —-ulib MYPEEL

If you prefer, you can shorten this command line by defining a new
abbreviation using the PRIMOS ABBREV command, as follows:

ABBREV -AC MYEMACS EMACS %1% -ULIB MYPEEL

2-13 Seoond Edition



EMACS EXTENSION WRITING GUIDE

Once you have created the abbreviation, you can invoke EMACS and cause
it to load the fasload file simply by typing the following:

MYEMACS [filename]

The ABBREV feature is explained in the Prime User's Guide.

To load several library files, you can create a top level library file
which contains commands to load all the other library files. For
example, suppose your PEEL source for your top level library file is
the following:

(load_compiled "file 1")
(load_compiled "file 2")
(load_compiled "file 3")

Then when you load the top level library file, it will in turn load
file 1, file 2, and file 3.

SUMMARY OF STEPS FOR CREATING EXTENSIONS

1. Create PEEL source code by:
e Expanding a macro, as explained in this chapter

® Writing PEEL source code directly, as explained in the
rest of this book

Be sure that EMACS is in no-fill mode. If necessary, enter
{ESC} X fill_off.

To associate PEEL commands with keys, add the set_permanent_key
command at the end of the code for each command.

To use the commands in the same EMACS session, type {ESC} X pl
once and then, for each command, {ESC} X command_name.

2. Save the PEEL code in either uncompiled or compiled format.
e To save as uncompiled PEEL source code, use a write_file

or save_file command in a file with a name of your
choice.

Second Edition 2-14

J



CREATING, TRANSFORMING, AND BINDING EXTENSIONS

e To save as compiled PEEL code (the preferred way), use
{ESC} X dump_file to save a file of compiled PEEL code.
Before you use dump_file, the name of your buffer or
file of source code should end in .EM, so that dump_file
can create a oorresponding filename with an .EFASL
(EMACS fastload) suffix.

3. For your next EMACS session, load the oode in one of the
following ways:

e If the code is unocompiled source oode, use {ESC} X
load_pl_source.

o If the code is compiled, do a "fast load" with either of
the following methods:

- Use {ESC} X load_compiled after you invoke EMACS
or

- Use -ulib filename to load the ocode when you
invoke EMACS or

In either case, use only the root of the filename
without the .EFASL suffix.

4. To invoke any command you have loaded, wuse {ESC} X
command_name. If the set_permanent_key command is included in
the source code, you can invoke the associated ocommand by
pressing the appropriate key or combination of keys.

WHAT IS NEXT

In this chapter, you learned how to make customized EMACS commands from
macros. You can save these personalized commands and reload them at
every EMACS session.

The rest of this book shows you how to create your own commands

directly in PEEL. However, the methods of saving and reloading these
commands are the same ones you learned in this chapter.

2-15 Second Edition



A

Elementary PEEL

Programming

This chapter discusses the following:
e PEEL as a programming language
e Elements of list processing
¢ Assignments
e Arithmetic operations
® Arrays

e Functions that manipulate lists

PEEL AS A PROGRAMMING LANGUAGE

The preceding chapters have introduced you to same of the simpler ways
you can use PEEL. In this chapter, we are going to discuss PEEL as a
programming language, show you how to create and execute programs in
that language, and then how to compile and execute those programs.

Also in this chapter we will look at the mathematical operations that
can be performed using PEEL. It may surprise you that PEEL has
arithmetic or mathematical operations, because PEEL is an extension to
an editor, and might be expected to be strictly a string processing
language. However, as with any programming language, PEEL programs use

3-1 Seocond Edition



EMACS EXTENSION WRITING GUIDE

counters for such things as 1loops and oomparisons, and arithmetic
operations are needed for these.

You should not think of PEEL either as a string processing language or
a numbers processing language, although it does process both numbers
and strings. Rather, you should classify PEEL, as a list processing
language. In fact, PEEL is based on LISP, the list processing language
invented by John McCarthy in the late 1950's. LISP has been used for
many years to program artificial intelligence applications. It is used
in EMACS as the extension language, PEEL, which enables EMACS to become
a very intelligent editor indeed.

ELEMENTS OF LIST PROCESSING

This section discusses the following:
e Atoms
® Integer and string atoms
® Lists
® Nested lists
o Symbolic expressions (S-expressions) and forms
® How to execute PEEL programs
® Output from PEEL programs
e The value of an S-expression

e Evaluating S-expressions: effects and side-effects

Atoms

The fundamental objects in PEEL are atams. You specify an atom by
typing its name, which normally oconsists of letters, digits, or any
printing character except a blank, a left parenthisis, or a right
parenthesis. Often, the name of an atom is an ordinary word, such as
"counter”.

Integer and String Atoms

As we shall see, an atom can have as a value any of a wide variety of
data types, including numeric or string values. You specify numeric or
string atoms directly by typing the value of the atam.

Second Edition 3-2

N

N

J



ELEMENTARY PEEL PROGRAMMING

For example, you may specify an integer atam by typing one or more
decimal integers, optionally preceded by a plus sign (+) or a minus
sign (). The following specify integer atams:

234
+234
-234

You may specify a string atom by typing any printable ASCII characters
enclosed in double quotation marks. The following specify string
atoms:

"abc"

"This is a sentence.”
"a(b"

Lists

A list is a group of atoms enclosed in parentheses. For example:
(forward_char)

This is a list containing the single atam forward_char.

Another example is:

(setg x 5)
'EI_;his is a 1list oontaining three atoms: setq, x, and the integer atam
It is possible for a list to contain no atoms whatsoever. Such a list
is called the null list, and is written as follows:

()

Each of the atoms in a list is said to be a member of the list. For
example:

(setqg x 5)

This list has three members: setq, x, and 5.

3-3 Second Edition



EMACS EXTENSION WRITING GUIDE

Nested Lists

It is of fundamental importance that a member of a list can be another
list. This expands our definition of 1list, since now a list can
contain more than just atoms. Consider the following example:

(setg x (+2 3))

This example illustrates a list as a member of another list. The outer
list contains three members, but only two of these members, setq and x,
are atams. The third member is the inner list ( +2 3 ). The inner
list, for its part, contains three atoms: +, 2, and 3.

Symbolic Expressions (S-expressions) and Forms

A symbolic expression, abbreviated s-expression, is either an atom or a
list.

A form consists of one or more s-expressions.

When you write the source oode for a PEEL program, you are really
writing a form, consisting of s-expressions.

EVALUATION OF S-EXPRESSIONS

Now let us look at some actual examples of the PEE, programming
language in action. If you have a terminal available to you, you can
try out these examples as you read.

How to Execute PEEL Programs

Let us review the major ways we have already learned to execute PEEL
programs.

Suppose, for example, you are editing in EMACS, and you have text
displayed on your screen. If in the middle of your edit you type {ESC}
{ESC} (that is, you press the "escape" key twice), at the bottam of
your screen, in the minibuffer, EMACS displays the prompt PL: to
indicate that it is ready to accept a PEEL statement.

If you now type (forward_char), what you have typed is an s—expression,
a list containing the single atom forward_char. If you then press
RETURN, EMACS automatically executes what you have typed as a PEEL
statement. You see the result on your screen: the cursor, indicating
the location of the EMACS point, will have moved to the next character
in the buffer.

Seocond Edition 3-4

J



b

ELEMENTARY PEEL PROGRAMMING

This is the simplest way to execute a PEEL program, but obviously you
can use it for only the very shortest PEEL programs, usually programs
oonsisting of a single short s—expression.

To execute a more complex PEEL program, you can type the source program
into an EMACS buffer and then tell EMACS to execute the oontents of
that buffer as a PEEL program. Following is a simple example of how
you do that.

1. Start up a new EMACS buffer by typing the following EMACS
command :

{CTRL—X} B

2. Type the following text into the buffer:

(forward_char)

3. Move the cursor in your buffer so that it is on the character
"f", and type the EMACS command:

{ESC} X pl

This command tells EMACS to interpret everything in your current buffer
as a PEEL source program, and to compile and execute it. After EMACS
completes execution, you will see the result immediately on your
screen: the cursor will have moved forward one character, to the
letter "o" following "f".

In the examples that follow, if the example is simple, you can use
either method described above to execute the program on your terminal.
However, as soon as the example gets a little more complicated, be sure
to use the second method, typing the source into a regular text buffer
and then executing the contents of the buffer by means of {ESC} X pl.

Output From PEEL Programs

Following is a PEEL statement that can be executed by either of the
methods described above.

(+ 2 3)

3-5 Second Edition



EMACS EXTENSION WRITING GUIDE

As we will see in the next few pages, this statement directs PEEL to
add the values of 2 and 3. Because the statement does not tell PEEL
what to do with the sum, PEEL throws the sum away.

To print out the value of this s-expression, use the print function, as
follows:

(print (+ 2 3))

This statement tells PEEL to compute the sum of 2 and 3 and print out
the result. When you execute this statement, PEEL prints the sum at
the top 1line of your edit buffer, overwriting whatever was already
displayed there. It is important to understand that the sum is not
actually stored into the text buffer; rather, the sum is simply
displayed on your screen. If you now type {CIRL-G}, EMACS refreshes
the screen, the sum that you just computed is removed, and the original
text from the text buffer is again displayed.

The Value of an S-Expression

Every s-expression, whether an atom or a list, has a value. Whenever
you execute a PEEL program, EMACS determines the value of each
s-expression as it goes along.

For example, consider the example we used above:
(+ 2 3)

As stated above, the value of this s—expression is 5, which PEEL
computes by adding together 2 and 3.

Let us take a closer look at how PEEL evaluates this expression,
starting with the two numeric atoms 2 and 3. Since each of these is a
numeric atom, it automatically has a value. The values, of course, are
2 and 3, respectively. When PEEL evaluates the s—expression
illustrated above, it evaluates these two atams first, before doing
anything else.

Functions in S-Expressions: PEEL does not evaluate the + atom in the
same way it evaluates the other two atams. The difference is that, by
convention, the first atom in a list is always oonsidered to be a
function name. An atom appearing at the beginning of a list is a
function that requires arguments before it can be evaluated, while
atoms appearing later in the list are evaluated intrinsically.

In the example we are considering, + is an atam which, when used as the
first atom in a list, is a function that adds together its arguments.

Second Edition 3-6

)



b

ELEMENTARY PEEL PROGRAMMING

The format of a function reference in PEEL is as follows:

(functionname argl arg2 ...)
That is, the function name appears first in the list and the arguments
are the other members of the list.
The * atom is similar to the + atom, except that it multiplies its
arguments rather than adding them. For example:

(* 2 3)

This s-expression uses the * function and returns the value 6.

There can be as many as eight arguments. As we shall see, most
functions require a specific number of arguments, but, as it happens, +
and * are functions that can have a variable number of arguments. For
example:

(+1 23 45)

This is a function reference with + as the function name and 1, 2, 3, 4
and 5 as five separate arguments. PEEL evaluates this function by
adding together the values of the five arguments. The result is 15.
To print the result, you would use the following statement:

(print (+ 1 2 3 4 5))

Functions With No Arguments: Same functions take no arguments. It may
surprise you to know that we have already seen several examples of
this. Consider the following:

(forward_char)

This is a 1list oontaining a single atom, forward_char. When PEEL
evaluates this list, it considers the first (and only) atom in the
list, forward_char, to be a function name. Since there are no other
members of the list, PEEL invokes the forward_char function with no
arguments. PEEL responds by moving the point in your current buffer
forward one position. On the other hand, you can invoke this same
function with a numeric argument, as follows:

(forward_char 5)

3-7 Second Edition



EMACS EXTENSION WRITING GUIDE

In this case, PEEL invokes the same function with a single numeric
argument, whose value is 5. The result is that EMACS moves the point
in your current buffer forward five characters.

If you have been following this discussion, you may be puzzled at this
point, because we have been discussing forward_char as a function
without telling you what the value of the function is. We will explain
this later, but for now just think of forward_char as a function that
does something, but does not compute a value that you care about.

Functions With Expressions as Arguments: The arguments of a function
need not be atoms. Consider the following example:

(+2 (*3 4))

Here we see the function +, again with two arguments. The first
argument is atom 2, but the second argument is another 1list, (* 3 4).
To evaluate this 1list, PEEL multiplies 3 and 4 together to get the
product 12. Thus, evaluation of (+ 2 (* 3 4)) 1is equivalent to
evaluation of (+ 2 12), for which PEEL computes the value 14.

You can build up extremely complex s-expressions. For example,
consider the following:

(* (+23) (+405))

In this example, we see that * is a function with two arguments, and
that each of those arguments itself requires a function computation.
The value of the first argument is computed by adding together 2 and 3
to get 5, and the value of the second argument is 4 plus 5, or 9. The
value of the entire s—expression is computed by multiplying 5 by 9 to
get 45.

These examples illustrate the following general rules about evaluation
of s—expressions:

e DEEL evaluates s-expressions from the inside out. That 1is, it
evaluates the arguments of a function before evaluating the
function. (More precisely, the first item in the 1list is
evaluated, and if found to be a function name, then the
arguments are evaluated before the function is applied to the
arguments.)

e PDEEL evaluates the arguments of a function from left to right.

Second Edition 3-8



ELEMENTARY PEEL. PROGRAMMING

Note

We will see later that it is even possible for the first member
of a 1list, the member we have been calling the function name,
to be an s-expression. In that case, PEEL evaluates that
s—expression first, before evaluating any of the arguments.

Evaluating S-Expressions: Effect and Side—effect

When an s-expression is evaluated, the effect of that evaluation is the
value of the s—expression. For example, the effect of (+ 2 3) is the
value 5.

Sometimes an s—expression also has a side-effect. A side-effect is an
action that PEEL. or EMACS takes in addition to evaluating the
expression. The simple example of +, just above, has no side-effect.
However, the s-expression (forward_char 5) has the side-effect of
moving the point in your text buffer forward five characters.

Every s—expression has an effect, or value, but not all s-expressions
have side—effects.

What then, you may wonder, is the value of (forward_char 5)? You can
easily discover that for yourself by simply executing the following
statement by either of the two methods we have discussed:

(print (forward_char 5))

If you try this, you will discover the following:

e PEEL prints () at the top of your teminal screen. This is the
null list, which we discussed previously in this chapter, and it
is the effect or value returned by the forward_char function.

® EMACS moves the point in your buffer forward five characters.
This is the side-effect of the forward-char function.

Thus we see that forward-char is an example of a function whose value
is not numeric but is a list. As we shall see, a function may return
any of a wide variety of data types, including numbers, lists, strings,
and so forth.

3-9 Seocond Edition



EMACS EXTENSION WRITING GUIDE

ASSIGNMENTS
In most high-level programming languages, the = sign 1is used to
indicate assignment of a value to a variable. For example, in many

languages the following statement assigns to the variable X the numeric
value 5:

In PEEL, assignments are performed by executing s—expressions involving
PEEL functions. This section presents the following:

e The setqg function
e The quote (') operator
e The eval function

e PEEL Data Types

The Setq Function

The setq function can be used to assign a value to a variable. For
example:

(setqg x 5)

This statement assigns to the atom x the value 5. This is the PEEL
equivalent of the assignment statement previously shown using the =
sign. Notice that assignment is a side-effect of the setq function.

Once an atom has been assigned a value, you can use that atom in any
s-expression, and PEEL will use the assigned value when it executes the
s-expression. For example, once the preceding statement has been
executed, then the statement (print (+ x 12)) prints the value 17,
computed by adding 5 (the value of x) to 12.

The Quote (') Operator

Normally when an atom appears in an s-expression, PEEL evaluates that
atom and replaces it with its value. You may suppress the evaluation
by using the quote operator. The quote operator consists of single
quotation mark (') placed before the atam to be quoted.

Second Edition 3-10



9

)

ELEMENTARY PEEL PROGRAMMING

Consider the following:

(setq v x)

(setg w "x)
The first line assigns to the variable v the value of the atam x, or 5.
The seocond line assigns to the atam w the atam x itself, not its value.

To verify this for yourself, execute the preceding setq statements.
Then try each of the following print statements:

(print x)

(print v)

As you see, PEEL prints the value 5. Now execute the following print
statement:

(print w)

This time, you will notice, PEEL prints the name of the assigned atom,
x.

Eval Function

The eval function is, in a sense, the inverse of the quote operator.
Normally, when an atom is used in an s—expression, PEEL performs one
evaluation of that atom. As we have seen, the quote operator
suppresses that one evaluation.

The eval function causes PEEL to perform a second evaluation, that is,
an evaluation of the result computed from the first evaluation. To
understand this, consider this example:

(setg x 5)

(setg w 'x)

3-11 Seoond Edition



EMACS EXTENSION WRITING GUIDE

As we have seen, the value of w is not 5, but is rather the atom x.
Suppose you now attempt to execute this statement:

(print (+ w 3))

You might think that PEEL prints the value 8. However, remember that
the value of w is the atom x, not the integer 5, so in fact PEEL prints
an error message telling you that it is illegal to add the value of w
(the atom x) to something else.

Now suppose you attempt to execute this statement:

(print (+ (eval w) 3))

How does PEEL execute this statement? First, it evaluates the atom w
to get the atom x. However, since w is used as an argument to the EVAL
function, PEEL does an additional evaluation, computing the value of x
as 5. In this case, PEEL does print the value 8, computed by adding 5
to 3.

PEEL Data Types

Similar to most high-level languages, PEEL supports a variety of data
types. We will discuss them in detail in a later chapter, but for now
let us look at the most commonly used data types.

You may use the setq function to assign a value of almost any data type
to a variable. We have already seen two different data types used in
assignments, the integer data type and the atom data type. As we have
seen, the statement (setq x 5) assigns to the atom x the integer value
5, while the statement (setq w 'x) assigns to w the atom x. This
illustrates the use of the atom data type as opposed to the integer

data type.
The string data type may also be used in assignments. Consider, for
example, the statement:

(setg str "This is a string.")

This statement assigns to the atom str the string shown. You may print
out this string by using the statement:

(print str)

Seocond Edition 3-12

J



ELEMENTARY PEEL PROGRAMMING

Perhaps most interesting is the 1list data type. That is, you may
assign to a variable a value which is equal to a list of other atoms.
To do this, you usually need the quote operator ('). For example,
consider the following:

(setq 1v *(+ 2 3))

Here the ' operator applies to the entire list that begins with the
following left parenthesis. Therefore, PEEL does not evaluate this
list, but simply assigns the list to the atom lv. Therefore, 1lv does
not have the integer (data type) value 5, but rather has the list (data
type) value (+ 2 3). You can see this for yourself by executing the
following statement:

(print 1lv)
Notice that this statement prints out the actual list as its value.
As before, you can force an additional evaluation to take place by

using the eval function. Consider, for example, the following
statement:

(print (eval 1v))

This statement causes PEEL to actually evaluate the 1list assigned to
lv, and to print its value, 5.

ARITHMETIC OPERATIONS

All numeric variables in PEEL are integer variables. Therefore, you
cannot use PEEL to manipulate floating point or fractional values.
Furthemore, all mathematical operations are performed using integer
arithmetic.
The following functions are used to perform arithmetic operations:

e Addition and multiplication

® Subtraction and negation

® Incrementing and decrementing by one

e Division and modulo

® Forms and nested statements

3-13 Second Edition



EMACS EXTENSION WRITING GUIDE

Addition and Multiplication

As we have already seen, + performs addition and * performs
multiplication. For example, (+ 2 3) has the value 5, while (* 2 3)
computes the value 6. Neither of these operators has a side-effect.

The + function can take from one to eight arguments. All arguments
must be numeric. If there is only one argument, + and * simply return
the value of this one argument. If there is more than one argument, +
returns the sum of all the arguments, and * returns the product of all
the arguments. Here are some examples:

(+ 23)
(* 23)

Each computes the value 23.

(+123 45)

This s-expression computes the value 15.
(*12345)

This s—-expression computes the value 120.

As with all functions, + and * can have as their arguments variables
and s-expressions. However, all argquments to these and other
arithmetic operators must have numeric values. For example, oonsider
the following:

(setq length 20)

(setq width 5)

(setqg area (* length width))

(setg perimeter (* 2 (+ length width)))

The first two lines of this example set the variables length and width
to the integer values 20 and 5, respectively. The third 1line is the
PEEL representation of the ordinary formula area = length * width, and
it assigns to the variable area the value 100. The 1last s—expression
is the PEEL representation of the ordinary formula perimeter = 2 *
(length + width), and it assigns to the variable perimeter the value
50.

Second Edition 3-14

J



D)

ELEMENTARY PEEL. PROGRAMMING

Subtraction and Negation

The - function is used for both subtraction and negation. When it has
one argument, it performs the negation operation, and when it has two
arguments, it performs the subtraction operation.

Here is an example:

(setq a 5)
(setq b 8)
(setg ¢ (- a))
(setg d (- b a))
The third 1line of this example negates the value of a and assigns the

result, -5, to c. The fourth line subtracts the value of a from the
value of b, and assigns the result, 3, to the variable d.

Incrementing or Decrementing by One

Adding 1 to, or subtracting 1 from, an integer is a fairly common
operation in computer programs. Thus, PEEL provides two operators for
convenience.
The 1+ function takes one argument and returns the value obtained by
adding 1 to that argument. For example:

(setq counter (1+ counter))
This adds 1 to the value of counter and assigns the result back to
counter, thereby incrementing the counter by 1.
The 1- function takes one argument and returns the value obtained by
subtracting 1 from that argument. For example:

(setqg counter (1- counter))

This subtracts 1 from the value of counter and assigns the result back
to counter, thereby decrementing the counter by 1.

3-15 Seocond Edition



EMACS EXTENSION WRITING GUIDE

Although these two operators are often convenient, they do not really
provide any additional functional capability to PEEL. As you can see,
the examples above are equivalent, respectively, to the following
examples:

(setqg counter (+ counter 1))

(setq counter (- counter 1))

Division and Modulo

As previously stated, PEEL performs only integer arithmetic. This may
be inconvenient when you wish to divide two values and obtain a
noninteger value. To make this easier for you, PEEL provides functions
that compute either the quotient or the remainder of a division.

The division (/) and modulo functions complement each other. Fach of
these functions takes two arguments. The / function returns the

quotient obtained by dividing the first argument by the second. For
example:

(/ numerator denaminator)

This returns the value of the quotient obtained when the numerator is
divided by the denaminator.

The modulo function returns the remainder obtained when the first
argument is divided by the second. For example:

(modulo numerator denaminator)

This returns the remainder obtained when the numerator is divided by
the denaminator.

In most cases, the quantities you will be dividing are positive
integers. When PEEL divides two integers using /, it truncates the
result by throwing away any fractional part. For example:

(/ 44 5)

This returns the value 8. The actual value of 44 divided by 5 is 8.8,
and PEEL truncates this result and returns 8.

Second Edition 3-16



ELEMENTARY PEEL PROGRAMMING

On the other hand, consider the following expression:
(modulo 44 5)

This returns the remainder from the same division, which is 4.

The above discussion tells what happens when both the numerator and the
denaminator are positive. The following rules describe what happens
when one or both are negative:

e The / function always truncates toward 0. Therefore, (/ -44 5)
and (/ 44 -5) always return the value -8.

e If the value returned by modulo is non-zero, then its sign is

always the sign of the denaminator. For example:

(modulo —-44 5)
(modulo 44 -5)

These return the values 1 and -1, respectively.

Forms and Nested Statements

Because PEEL, statements can be nested to any depth, you have the power
to make your PEEL programs as unintelligible as you wish.

For example, oonsider the following statement which coonverts a
temperature value from celsius to fahrenheit:

(setq fahrenheit (+ (/ (* (setq celsius 20) 9) 5) 32))

This example ocontains several nesting levels, and may be difficult to
read. You can simplify it as follows:

(setg celsius 20)

(setq celsius (* celsius 9))
(setq celsius (/ celsius 5))
(setq fahrenheit (+ celsius 32))

You may find this way of writing the program is not nested enough.
Ultimately, how you write a statement is a matter of personal taste.

3-17 Second Edition



EMACS EXTENSION WRITING GUIDE

In informal terminology, an s—expression that oomputes one simple
operation is often called a statement. A nested series of statements
is called a form. Using this terminology, the first fahrenheit example
above is defined as one form that contains five statements.

ARRAYS
Most high-level languages have the capability of storing data values in
arrays. Usually the high-level language provides a statement such as
DIMENSION or DECLARE, which you use to specify that a certain variable
is to be an array. When such declarative statements are used, you
specify at the time your program is compiled that a certain variable is
to be an array of a certain data type and a certain size.
Unlike other high-level languages, PEEL does not use declarative
statements to define arrays. As with other PEEL capabilities, array
creation and manipulation is performed in PEEL by invoking predefined
functions.
This section discusses the following topics:

® Creating an array

® Assigning values to an array

® Filling all or a portion of an array

e Referencing an array

® Arrays of other data types

e Arrays with multiple names

® Releasing storage allocated to an array

e Other array functions

Creating an Array

You use the make_array function to create an array. PEEL creates the
array as a side-effect of the function invocation. The format for
using this function is as follows:

(make_array type number)

Here type is an atom, a quoted name, specifying the data type og the
elements of the array, and number is the number of elements in the
array.

Second Edition 3-18



)

ELEMENTARY PEEI, PROGRAMMING

For example, consider the following:

(make_array 'integer 5)

This function creates an integer array ocontaining five elements. As we
shall see later, you may reference the individual elements by means of
subscript index values, which range from 0 through 4.

Unfortunately, the preceding example by itself is useless. The reason
is that, as in the case of other PEEL statements, unless you assign the
result to a variable, the result is simply thrown away. To do this,
you use the setq function. The full format for use of make_array when
you wish to use the created array is as follows:

(setq variable (make_array type number))

Here, variable is the name of the variable that you wish to use in
referencing the array. (You can think of it as the name of the array.)
For example, consider the following statement:

(setqg boxes (make_array 'integer 5))

This creates an array called boxes that oontains five individual
integer values, numbered 0 through 4.

Assigning Values to an Array

You use the aset function to assign a value to an individual element of
an array. The format is as follows:

(aset value variable index)

Here, value is the value to be assigned to the array element, variable
is the  name of the array, and index is the index of the element in the
array. The value must have the same data type as the data type of the
elements of the array. In addition, the index must have an integer
value greater than or equal to 0 and less than the second argument of
the make_array function invocation that created the array.

3-19 Second Edition



EMACS EXTENSION WRITING GUIDE

For example, consider the array boxes, which was created earlier with
the statement (setq boxes (make_array 'integer 5)). For this array you
may use a statement in the following format to assign a value to an
individual element of that array:

(aset value boxes index)

Here, value is integer value less than 268435456 or 2**28, and index is
an integer value between 0 and 4. For example:

(aset 243 boxes 2)

This statement assigns the value 243 to the element of boxes with the
index 2. (Note that this is the third element of the array bozxes,
since the first element has the index 0.)

Filling All or a Portion of an Array

You may use the fill_array function to assign the same value either to
all elements of an array or a contiguous portion of the array.

To £ill an entire array, use the statement in the following format:
(fill_array variable value)

Here, variable is the name of the array, and value is any value whose
data type equals the data type of the elements of the array. PEEL
assigns the value to every element of the specified array.

For example:

(£i11_array boxes 100)

This statement assigns the value 100 to each of the five elements of
the array boxes, which we previously defined.

If desired, you may specify two additional arguments to fill_array to
assign a range of index values for a contiguous set of elements. For
example:

(fill_array boxes 100 2 4)

Second Edition 3-20

J



D)

ELEMENTARY PEEL. PROGRAMMING

This statement assigns the value 100 to the three elements of the array
boxes with indices 2, 3, and 4. The first two elements, with indices 0
and 1, are left unchanged.

The format of this use of fill array is as follows:
(£ill_array variable value indexl index2)

Here, indexl is an integer greater than or equal to 0 and less than the
size of the array, and index2 is an integer greater than or equal to
indexl and less than the size of the array. PEEL assigns the specified
value to all elements of the array whose index value is greater than or
equal to indexl and less than or equal to index2.

Referencing an Array

To recover the value of an individual element of an array, use the aref
function. The format is as follows:

(aref variable index)

Here, variable and index are the same as for the aset function. The
value returned by this function reference is the value stored in that
array element. Suppose, for example, you have filled an array by using
the following statements:

(£fill_array boxes 200 0 2)
(fill_array boxes 100 3 4)

Then the statement (print (aref boxes 1)) prints the value 200, and the
statement (print (aref boxes 3)) prints the value 100.

Arrays of Other Data Types

We will discuss PEEL data types in detail in a later chapter, but for
now let's look ahead and see how to define arrays of other data types.
Consider the following example:

(setq messages (make_array 'string 30))

3-21 Second Edition



EMACS EXTENSION WRITING GUIDE

PEEL creates an array called messages containing thirty elements, each
of which has the data type string.

You may use the aset, aref, and fill_array functions just as you did
before, provided that you use string values, where before you used
integer values. For example:

(fill_array messages "This is a message.")

This statement assigns to each of the thirty elements of the array
messages the string "This is a messade.". Now let's change one element
of the array:

(aset "new message." messages 20)

This statement assigns the string "new message" to the element of the
array messages with index 20. Now let's change another element of the
array:

(aset (aref messages 21) messages 20)

This fetches the value of the element of messages with index 20 and
assigns that value to the element of messages with index 21. In other
high-level languages this string assignment might be written as:

messages (21) = messages (20)
Now consider the following examples:

(setqg laundry_lists (make_array 'list 12))
(setqg in_trouble (make_array 'Boolean 100))

When PEEL executes these statements, it creates two arrays, a
twelve-element array called laundry_lists, each of whose elements is a
list, and a 100-element array called in_trouble, each of whose elements
is Boolean. In a later chapter, we will discuss the list and Boolean
data types, and describe how they are used. : ‘

Second Edition 3-22

J



)

ELEMENTARY PEEL PROGRAMMING

Arrays With Multiple Names

You may use the setq function to bind a given array to more than one
name. For example, given the array boxes previously defined, you could
use the following statement:

(setq rectangles boxes)

This statement gives this same array a second name, rectangles.

It is important for you to understand that this statement is not an
array assignment in the sense that array assignment is used in other
high-level languages. In those languages, an array assignment is
performed when there are two arrays, occupying separate storage areas,
and the value of each element from the first array is assigned to the
corresponding element in the second array.

In the example we are oonsidering here, we are discussing a single
array occupying one storage area. The setqg statement above gives two
different names to that single array. (More precisely, the statement
creates a new atom, rectangles, whose value is the same as boxes in the
sense that they both reference the same location in storage.) For
example:

(aset 874 boxes 0)

This statement assigns the value 874 to the first element of the array
boxes, and therefore also to the first element of the array rectangles.
As a result, the statement (print (aref rectangles 0)) prints the value
874.

Releasing Storage Allocated to an Array

If you use make_array to create an array with a large number of
elements, then a great deal of memory will be allocated by PEEL. For
example:

(setq huge (make_array 'integer 20000))

This statement creates a 20,000 element array named huge. If you wish
to release the storage occupied by that array, the easiest way is to
assign a new value to huge. For example:

(setq huge 0)

3-23 Second Edition



EMACS EXTENSION WRITING GUIDE

This assigns the integer value 0 to huge, and releases the storage
previously occupied by the array huge.

If you have created an array and given it multiple names, then you must

reassign each of the multiple names in order to release the storage
occupied by the array.

Other Array Functions

The array_dimension function: The array_dimension function takes one
argument, which must be an array name, and returns the number of
elements in that array, as defined in the make_array function. For
example:

(setg boxes (make_array 'integer 5))
(print (array_dimension boxes))

These statements cause the value 5 to be printed.

The array_type function: The array_type function takes one argument,
which must be the name of an array, and returns as an atom the data
type of the array specified in the make_array function. For example,
given the dimension of the array boxes above, oonsider the following
statement:

(print (array_type boxes))

This would print the atom integer.

As a slightly more esoteric example, suppose you wish to create a new
array with the same data type and size as an existing array. You could
use the array_dimension and array_type functions in the make_array
function, as follows:

(setqg squares (make_array (array_type boxes)
(array_dimension boxes)))

In this example, the first argument of make_array is the data type of
the array boxes, and the second argument is the dimension size of the
array boxes. As a result, a completely new array, squares, is created
with the same data type and the same dimension size as the array boxes.

Second Edition 3-24



9

ELEMENTARY PEEL PROGRAMMING

FUNCTIONS THAT MANIPULATE LISTS

Because PEEL is a variant of the LISP (list processing) language, and
because lists are such an important part of the language, it is not
surprising that PEEL has special functions that allow you to manipulate
lists themselves. This section discusses functions that:

® Reference lists

e Form lists

e Pull apart lists

Referencing Lists

Most of the programming examples we have discussed manipulate either
numbers or strings. Furthermore, the variables in most cases have had
either integers or strings as their values. Now let us look at some
situations where a variable has a list as its value.

As we have seen, you usually use the ' operator if you wish to assign a
list to a variable. For example:

(setq listval '(a b c))

This statement assigns to listval the 1list shown. If you now use
(print listval), PEEL prints out the value (a b c). Note that, in the
setq statement, if the quote operator (') had been amitted, then PEEL
would have attempted to evaluate the list (a b c) as a function call to
the function a with arguments b and ¢, and would have assigned the
result of that function call to 1listval. By including the quote
operator, we indicate to PEEL. that no such evaluation should take
place. The result is that listval has as its value the list itself.

The Reverse and Length Functions: The reverse and 1length functions
provide simple manipulations on values with the list data type. The
length function takes one argument, which must be a list, and returns
the number of elements in that list. Consider the £following example,
after listval has been defined as above:

(print (length listval))

The statement prints the value 3, the number of elements in the list
which has been assigned to listval.

3-25 Seocond Edition



EMACS EXTENSION WRITING GUIDE

The reverse function takes one argument, which must be a 1list, and
returns another 1list equal to the first list but with the elements
reversed. For example:

(setqg revlist (reverse listval))

This assigns to revlist the reverse of the list assigned to listval.
The result is that revlist has as the value (c b a).
These functions may be applied to null lists, with more or less obvious
results. For example:

(setg nullist '())
This statement assigns the null list to the variable nullist.

(length nullist)
This returns the value 0, the number of elements in the null list.

(reverse nullist)

This returns the null list.

As further illustration of these functions, let's oonsider the case

where one ot the elements of a 1list is itself another 1list. For
example:

(setqg nest "(a b (cde) f))

This statement assigns to the variable nest a list containing four
elements. The third of these elements is itself another 1list. When
you apply the reverse or length functions to this list value, PEEL
simply treats the third element as simply another element, no different
from the other three elements that are atoms. Therefore, the function
(length nest) returns the value 4, and the function (reverse nest)
returns the value (f (c de) b a). In both cases, the elament (c d e)
is treated the same as the other elements.

Second Edition 3-26



ELEMENTARY PEEL, PROGRAMMING

Forming Lists

If you have programmed in high-level languages with several data types,
then you know there are special operations that are applied to
variables of each data type. For example, the operations applied most
often to variables with integer data types are addition, subtraction,
multiplication, and division. The operations performed most commonly
on string values are concatenation and substring. Concatenation puts
strings together and substring pulls strings apart.

Similarly, there are special operations performed on 1lists. These
operations can be thought of as similar to the operations performed on
strings, in that they put lists together and pull lists apart. Let's
start with the operations that form lists by putting smaller lists
together.

The List Function: The list function takes one or more argquments and
returns a list as follows:

e The number of eleaments in the returned list equals the number of
arguments.

e Each element of the returned list equals the value of the
corresponding argument.

Consider the following example:

(setg x 23)
(setq str "This is a test.")
(setg y (list x str))

In this example, the reference to the list function has two arguments.
This reference returns a list containing two elements, each equal to
the value of its respective argument. As a result, the variable y is
assigned the following value:

(23 "This is a test.")

The Append Function: The append built-in function performs a more
complex list operation. It takes one or more arguments, and each of
its arguments must be a list. It returns a list value as follows:

e The number of elements in the returned list is equal to the sum
of all the elements in all of the arguments.

e The elements of the returned list comprise all of the elements
in all of the argument lists.

3-27 Seocond Edition



EMACS EXTENSION WRITING GUIDE

For example, consider the following:

(setqg listval '(a b c))
(setq newval '(x y))

These statements assign 1list values to both the variables listval and
newval. Suppose that once these assignments have been made, we execute
the following statement:

(append listval newval)

This returns a list value containing five elements, (ab c xy). You
can use the value returned by the append function in the way that you
use other functions. For example:

(setq longlist (append listval newval))

This statement assigns to longlist this list containing five elements.
The result is the same as if you had executed the following statement:

(setq longlist '(a b c xVy))

The Cons Function: The cons function adds a new element to the front
of an existing list. Consider, for example, the following:

(setqg listval '(a b c))
(setq list2 (cons 'd listval))

These statements assign to 1list2 the 1list obtained by adding the
element 4 to the front of the value of listval. The result 1is that
list2 equals (dab c).

Pulling Apart Lists

The car and cdr functions can be used to pull lists apart. Suppose we
define qv as follows

(setgq qv '(abcdef))

Second Edition 3-28

J



)

ELEMENTARY PEEL, PROGRAMMING

We know that we can use the length function to determine how many
elements there are in qv, but we do not yet have any functions to allow
us to determine what those elements are.

The Car Function: The car function takes a single argument, a list,
and returns as its value the first element in that list. Consider, for
example:

(car qv)
Given the definition of gv above, this function reference returns the
atom a.
By using car in conjunction with the reverse function, you can obtain
the last element of a list. For example:

(car (reverse qv))

This statement returns the atom f. This results from reversing the
list qv, to obtain (f e d ¢ b a), and then applying car to that list to
get the first element, which is the atom f.

The Cdr Function: The cdr function takes one argument, a list, and
returns a list defined as follows:

e If the argument is the null list, then cdr returns the null
list.

e If the argument is a list containing one or more elements, then
the list returned contains all the elements of the argument list
except the first element.

For example, given the definition of qv above, consider the following:
(cdr qv)

This function reference returns the list (b ¢ d e f), which is obtained

by removing the first element, a, from the argument list.

By using car and codr in various combination, you can obtain any element

in the list. For example:

(car (cdr qv))

3-29 Second Edition



EMACS EXTENSION WRITING GUIDE “

This statement returns the second element of the 1list qv, b. This “X
works because: first, (cdr qv) returns the 1list (b cde f); and

second, car applied to that list returns its first element, b, which is

the second element of the original argument list.

Similarly, consider the following statement:
(car (cdr (cdr qv)))

This returns the third element, c, of the list qv.

By combining the car and cdr functions, which pull 1lists apart, with

the functions previously described, which put lists together, you can

perform very complex list operations. For example, given the 1list qv ‘\
defined above, suppose you wish to form a new list that is the same as

qv except that the second element is removed. You can do so by using

the following expression:

(cons (car qv) (cdr (cdr qv)))

In this example, (car qv) returns a, and (cdr (cdr qv)) returns
(cde f). BApplying cons to these two arguments yields the result »\

(acde f), which is the original argument with the second element
missing.

Second Edition 3-30



Logic and L.ooping

Although the subjects of the preceding chapters have been a necessary
preliminary to our discussion, they really have not shown how to write
programs. This chapter begins the discussion of PEEL statements that
are necessary to write programs.

PEEL has great similarities to other programming languages in the area
of program logic. Specifically, there are two categories of command
statements: looping statements and decision statements.

PEEL offers two types of looping statements:

Statement Definition
do_n_times Repeat an action a specified number of times.

do_forever Repeat an action until something happens that
causes a stop_doing statement to be executed.

PEEL also offers three types of decision—making statements:
Statement Definition
if ... else Choose one action or another, based on a Boolean

value.

4-1 Second Edition



EMACS EXTENSION WRITING GUIDE

select Choose an action based on any one of a number of
listed conditions.

dispatch Choose an action based on the text at the current
cursor.

These five statements will be discussed at some length in this chapter,
together with Boolean and relational operators and the PEEL statements
that return Boolean values.

As you will see, these ocontrol statements are very simple and
straightforward. The only thing you should keep in mind is that the
control structure does not contain a GO TO statement. Consequently,
you should plan to write structured programs.

LOOPING

The two statements, or forms, that control looping are do_n_times and
do_forever. (Recall that a form, defined in Chapter 3, consists of a
number of s-expressions. The do_n_times form, for example, contains
the function name do_n_times, an integer iteration oount, and any
number of statements or forms.) The do_n_times form tells EMACS to
perform the statements the number of times indicated between the
do_n_times and the parenthesis oconcluding the form. After the
do_n_times count is exhausted, execution continues to the statement or
form following the closing parenthesis.

The do_forever form tells PEEL to go into an infinite loop, executing
each statement over and over again until something, we hope, tells it
to stop. (The do_forever statement is analogous to a DO UNTIL in
PL/I.) The statement that stops the looping is stop_doing.

You can also use the stop_doing statement in a do_n_times form. 1In
this case the stop_doing acts as an early exit. The following three
examples illustrate the do_n_times form.

Example 1:

(setqg counter 0)
(setqg accumulator 1)
(do_n_times 5
(setq counter (1+ counter))
(setq accumulator (* accumulator counter)))
(print accumulator)

Second Edition 4-2



b

LOGIC AND LOOPING

This function computes five factorial. A more general function is:

Example 2:

(setq counter 0)
(setq accumulator 1)
(setq loop_counter (prompt_for_integer "Type a number" 1))
(do_n_times loop_ocounter
(setqg counter (1+ counter))
(setq accumulator (* accumulator counter)))
(print accumulator)

The purpose of the prompt function is to print a message at the bottam
of the screen, then return what is typed at the temminal as its value.
The print string "Type a number" is followed by the default value of 1.

If you wanted to insure that the value of this function does not exceed
300,000, you would do the following:

Example 3:

(do_n_times loop_counter
(if (> accumulator 300000)
(stop_doing))
(setg counter (1+ counter))
(setq accumulator (* accumulator counter)))

While the if statement will be discussed in greater depth later in this
chapter, its use in PEEL is identical to its use in other programming
languages. The if statement in this example means that if the value of

accumulator is greater than 300,000, EMACS should execute the
stop_doing statement.

The following example illustrates the do_forever form.

Example 4:

(do_forever
(if (line_is_blank)
(delete_char)
else
(stop_doing)))
(do_forever
(prev_line)
(if (line_is_blank)
(delete_char)
else
(stop_doing)))

4-3 Seoond Edition



EMACS EXTENSION WRITING GUIDE

These two do_forever forms delete blank lines that may surround point.
The first form goes forward from point. Notice that the delete_char
command brings the following line to'point; oconsequently, no movement
command is necessary. The second form requires a movement ocommand
because the delete_char always results in a nonblank line at point.

Looping With Arrays

Looping is commonly used with arrays, which were defined in the
previous chapter. For example, consider the following array statement:

(setq boxes (make_array 'integer 5))

Execution of this statement creates an array called boxes with five
individual integer values, with indices 0 through 4. We have already
discussed how to set every element of an array to a value, as in the
following statement:

(£i11_array boxes 100)

The same result can be accomplished by using the do_n_times form, as in
the following:

(setq counter 0)

(do_n_times 5)
(aset 100 boxes counter)
(setq counter (1+ counter)))

As a more complex example involving arrays and loops, consider the
following:

(setg counter 0)

(aset 1 boxes 0)

(do_n_times 4
(aset (* (aref boxes ocounter) 2) boxes (1+ counter))
(setg counter (1+ counter)))

(print (aref boxes 4))

The second line of this example assigns the value 1 to the first
element of the array boxes, the one with index 0. The next three lines
comprise a loop that sets subsequent elements of boxes to twice the
preceding element. The last line prints the value of the last element
of boxes, the one with index 4. The value printed is 16.

Seocond Edition 4-4



b

LOGIC AND LOCPING

DECISION STATEMENTS

The If Form

Although the if form was used before, it will now be discussed in
detail.

The structure of the if form is:

(if (condition)
(statements/forms)
else
(statements/forms))

Condition must ultimately have the effect of returning a true or false;
that is, it must return a Boolean value. Only when condition is true
does EMACS execute the statements immediately following the if. When
condition is false, EMACS executes the statements following the else.
Note that the else is not within its own set of parentheses. The
reason is that the else is part of the if form.

Here is an example of a simple if form:

(if (= ocounter 3)
(print "Counter equals 3")
else
(print "Counter does not equal 3")

As in other programming languages, the condition following the if can
be complicated.

(setq yes_no (prompt "Do you want to continue"))
(if (] (= yes_no "YES") (= yes_no "yes"))
(do_something)
else
(do_something_else))

In these statements, | means "or". This form (where do_something is
not a real statement) says that if yes_no equals "YES" or "yes", it
should perform the actions indicated by do_something. Otherwise, it
should "do_something_else".

The if statements can test either user-defined oonditions or PEEL
statements. In particular, PEEL contains a number of statements that
monitor the state of the current buffer.

4-5 Second Edition



EMACS EXTENSION WRITING GUIDE

Buffer Conditions

So far, you have seen very little interaction between information in a
buffer and the extension language.
extensions, EMACS must be able to give you information about a variety
of what EMACS can tell you. Remember that

of things. Below is a list

"point" refers to the current cursor position.

Statement
at_white_char

beginning_of_buffer_p

beginning_of line_p

empty_buffer_p
end_of _buffer_p

end of_line_p

first_line_p

last_line_p

line_is_blank

looking_at "string"

Because (if (looking_at "string") ...) is very common, the two have

been combined into the form:

(if_at "string" ....
else ... )

Second Edition

Definition
Returns true if point is at a space.

Returns true if point is at the
beginning of the buffer.

Returns true if point is at the
beginning of a line.

Returns true if the buffer is empty.

Returns true if point is at the end of
the buffer.

Returns true if point is at the end of
a line.

Returns true if point is anywhere on
the first line of a buffer.

Returns true if point is anywhere on
the last line of the buffer.

Returns true if point is at a blank
line. A blank line is a line which is
either just a carriage return or spaces
and a carriage return.

Returns true if string is immediately
to the right of point.

In order to write meaningful

J



N

LOGIC AND LOOPING

Let's see how these statements are used. The following example shows
how to find the end of a paragraph of text. For this example, an
end_of paragraph is defined as one of the following:

1. A line beginning with a period (that is, a RUNOFF command)
2. A blank line
3. The end of the buffer

The example checks for each condition.

(begin_line)
(next_line)
(do_forever
(if_at "."
(stop_doing))
(if (line_is_blank)
(stop_doing))
(if (last_line_p)
(move_bottom)
(stop_doing))
(next_line))

The only new things here are the begin_line and next_line statements.
These, and other movement ocommands, are discussed in Chapter 8.
However, if you are impatient to get started, you can find out what
many of the movement commands are by typing {CTRL-_} C followed by the
keystroke that invokes a movement. For example:

{CTRL-_} C {CTRL-A}

This tells you that the name of the function that goes to the beginning
of a line is begin_line.

Action Commands

The previous section talked about PEEL statements that provide
information about the placement of point. A second category of
conditions indicates that an operation has been successful. You have
already seen one example, namely:

(if (forward_search "the") ... )

4-7 Second Edition



EMACS EXTENSION WRITING GUIDE

This statement returns true if and only if EMACS finds a "the" between
point and the end of the buffer. Therefore, any statements after the
condition are executed only if a "the" is found.

In general, if a statement can fail, it will return a Boolean that

indicates that the operation has failed. Appendix A 1lists what is
returned for every command.

Boolean and Relational Operators

Throughout this chapter, you have seen examples of Boolean operators.
The Boolean operators are:

Operator Function

& Performs logical "and" on its arguments. If all
arguments are true, & returns true.

| Performs logical "or" on its arguments. If one or
more arguments are true, | returns true.

Negates (or inverts) a Boolean value. That is, if

the argument is true, this function returns false.
If the argument is false, this returns true.

For example, if an operation will be performed when a line is not
blank, you would have the form:

(if (" (line_is_blank)) (do_something))

The relational operators oompare elements and report on their
relationship. The PEEL relational operators are:

Operator Function

< Returns true if the first argument is less than the
second argument.

<= Returns true if the first argument is less than or
equal to the second argument.

= Returns true if the first argument is equal to the
second argument.

Seoond Edition 4-8

J



LOGIC AND LOOPING

>= Returns true if the first argument is greater than
or equal to the second argument.

> Returns true if the first argument is greater than
the second argument.

= Returns true if the first argument does not equal
the seocond argument.

The Select Statement

When creating an extension, you often want the program to choose from a
number of alternatives. One way to do this is by having a long series
of nested if statements. For example:

(if (= ocounter 1) (do_something)
else
(if (= counter 2) (do_something_else)
else
(if (= ocounter 3) (do_a_third_thing)

)))

Fairly soon, you are nested so far down that you do not know where you
are. Moreover, keeping track of all the parentheses can be next to

impossible.

The PEEL statement that gets you out of this bind is select. Using the
above example, you might type:

(select counter
1 (do_something)
2 (do_something_else)
3 (do_a_third_thing)
otherwise
(do_what_you_have_to))

This form tells PEEL to choose an action based on the value of a
variable (in this case, ocounter). If no action can be chosen because
oounter does not have a value specified in the 1list, do the action
indicated by otherwise. The select statement, then, is just another
incarnation of the standard programming language construct of a CASE
statement.

4-9 Second Edition



EMACS EXTENSION WRITING GUIDE

The full structure of this form is:

(select expression
oonstants-1 actions-1
constants-2 actions-2

otherwise
other-actions)

The structure augments the above example by showing that two other
things are possible: 1) that the argument 1list can have multiple
entries, and 2) that more than one statement can follow a choice.

This structure is a little hard to read (especially since the statement
is fairly trivial). The following example better illustrates what the
select statement does. If you have used the settab command (located in
library EMACS*>EXTENSIONS>SCURCES>TABL.EM), you will recall that you
are told to type one of several characters. The following example,
while modified slightly, is taken from that function:

(defun move ()
(setq movement (prompt "Type a space, T, b, £, or q"))
(select movement
"" (delete_char)

(insert " ")
lltll
o (insert "T")
(delete_char)
"f "
npu (forward_char)
"bll
ngn (if (" (beginning_of_ line_p))
(back_char))
"Q" (return)
otherwise

(info_message "unknown response")
(sleep_for_n_milliseconds 1000)))

As you can see, this is a very simple function. First of all, a prompt
is displayed. The keystroke the user types is assigned to the variable
called movement. If it is a space, the actions following the space are
executed. Likewise, if the user types either £ or F, the action
indicated there is executed, and so on. Finally, if what is typed is
not in the 1list, a message is displayed (using the info_message
built-in function). So that the message is displayed long enough to be
seen, FMACS is told to go to sleep for 1 second. In this function,
return means exit from the routine.

Second Edition 4-10



LOGIC AND LOCPING

The Dispatch Statement

In a similar manner, you can use the dispatch statement to have EMACS
choose from a number of choices based on what text follows point. The
structure of this form is:

(dispatch
strings-1 actions-1
strings-2 actions-2
otherwise
other-actions)

In this form, string is the text that follows point. The way this form
works is identical to the select form. The only difference is that
there is no variable assignment phrase. Instead, EMACS checks to see
if the text following point matches one of the strings listed in the
strings list.

4-11 Seocond Edition



b

Writing Extensions

Previous chapters have given you numeric examples and functions that
you can use to write EMACS extensions. This chapter pulls together all
the underlying rules for writing EMACS extensions by describing the
programming enviromment for doing so.

THE EMACS/PEEL, ENVIRONMENT

Although PEEL. is a high-level 1language, the method you use to write
programs in PEEL is quite different from the method you use to write
programs in most other languages.

When you write a program in other high-level languages, you usually use
the following procedure:

e Use an editor (such as EMACS) to create an ASCII source file for
the program you wish to execute.

® Execute the compiler for the high-level language to transform
the source file into an object file.

® Execute the linking loader to produce an executable binary file.
e Execute the resulting executable file.
The PEEL enviromment is much more dynamic than the enviromment just

described for other high-level languages. As you already know, you can
create a PEEL source file in EMACS. You can then execute the program

5-1 Second Edition



EMACS EXTENSION WRITING GUIDE

by typing {ESC} {ESC} pl without having to perform separate compilation
or linking steps, and, in fact, without ever having to leave EMACS
itself. The result is that the PEEL programs you write become a part
of the EMACS enviromment, making it easy to extend the power of EMACS
and tailor it to your specific needs.

Especially important to the PEEL langquage are the defcom and defun

functions. When one of these functions is executed, it has the
important side-effect of permanently adding a new command or function,
respectively, to the EMACS enviromment you are using. The result is
you can use the command or function that you have defined at any point
after that in your EMACS session.

THE DEFCOM FUNCTION

You use the defcom function to define a new command. For example, in
Chapter 2, you saw the following defcom example:

(defcom tx
(do_n_times (numeric_argument 1)
(forward_char)
(forward_char)
(forward_char)
(self_insert \.)
))

When you execute this function, PEEL defines a new command called tx to
perform the specified action. This definition of tx illustrates the
simplest form of the defcom function, which is as follows:

(defcom name (action))
Before describing more complex uses of defcom, let's make it clear what
the definition of tx in the above example does.
In the example, defcom defines tx to be a command that moves the
current cursor (point) in your source file ahead three characters, and
then inserts a period at the new position of point in your text buffer.
The defcom action also ocontains a loop specifying that the operation

just described may be repeated several times, depending upon the value
of the following:

(numeric_argument 1)

Second Edition 5-2

J



D

WRITING EXTENSIONS

This function reference appears because, once the dJdefcom has been
executed, it is possible to invoke tx with a numeric argument. The
numeric_argument function returns the value of that numeric argument.
The "1" specifies the default value to be used in case tx was invoked
with no numeric argument at all.

Inserting a Documentation Line

When you use {CTRL-_} to obtain information about a command, normally
EMACS provides you with information just about system commands. When
you add your own PEEL commands to the EMACS enviromment, you may also
wish at the same time to make command descriptions available with the
help facility. You can do this by means of the &doc option to defoom.
For example, here is how you would change the definition of tx
previously given:

(defcom tx
&doc "Move cursor 3 chars, insert dot"
(do_n_times (numeric_argument 1)
(forward_char)
(forward_char)
(forward_char)
(self_insert \.)
))

This example is exactly like the preceding one, except that the second
line has been inserted. This line specifies the character string to be
used as documentation for this command when it is requested.

If you now use {ESC} X pl, EMACS does two things: 1) it adds the tx
command to its command enviromment, and 2) it adds the specified
documentation to its help facility. You can see this for yourself by
typing {CTRL-_} A, and then, in response to the "Apropos:" prompt,
typing the words "insert dot". EMACS will respond by listing the tx
command with the documentation line, "Move cursor 3 chars, insert dot",
that you specified.

ARGUMENT HANDLING WITH DEFCOM

Let us now look at some variations of the tx command example we have
already given. In these variations, we wish to focus on same of the
different ways to handle arguments to a defcom command.

In fact, PEEL provides several different methods for handling

arguments. We have already seen how to use the numeric_argument
function, which returns as its value the value of the numeric argument

5-3 Seoond Edition



EMACS EXTENSION WRITING GUIDE

supplied with the function. (Recall that to invoke the tx command with
a numeric argument you use {ESC} n {ESC} X tx.) However, PEEL also
provides other methods for handling the numeric argument, and some of
these methods are more convenient in certain circumstances.

Using Numeric Argument as a Repeat Factor

In the tx command example we just gave, we used the numeric argument
simply for the purpose of specifying how many times the action
specified by the command was to be performed. There is a way of doing
that automatically, as illustrated in the following example:

(defcom txb
s&doc “"Move cursor 3 chars, insert dot"
&na (&repeat)
(forward_char)
(forward_char)
(forward_char)
(self_insert \.)

When you execute this defcom, PEEL defines txb as a command that does
exactly the same thing as tx, but specifies it in a slightly different
way. The difference has to do with the following line:

&na (&repeat)

In this form, &na tells PEEL that it is to process a numeric argument
to the txb command in a special way, and &repeat tells PEEL what that
special way is: as a repeat factor. As a result of this line, PEEL
uses any numeric argument you specify with the txb command as a repeat
character, and it repeats the body of the command that number of times.

Notice that when you use this method to specify the handling of a

numeric argument, you need not specify any default value, because the
default value is always 1.

Second Edition 5-4

J



)

WRITING EXTENSIONS

Passing the Numeric Argument to a Variable

You may also specify that PEEL pass the numeric argument to a variable
whose name you specify. For example, suppose we redefine the tx
command again as follows:

(defoom txc
&doc "Move cursor <arg> chars, insert dot"
&na (&pass curmov &default 1)
(do_n_times curmov (forward_char)
(self_insert \.)

This command works a little differently from the previous examples.
Notice that the third line of the definition is:

&na (&pass curmov &default 1)

This line specifies that when there is a numeric argument with the txc
command, PEEL, is to pass the value of that numeric argument to the
variable curmov, which you have specified. Moreover, if no numeric
argument is provided when txc is invoked, the default value 1 is to be
assigned to curmov.

Once you have assigned the value of the numeric argument to a variable,
you can of course use that variable in any way you like. In the
definition of txc above, we have used it to specify the number of times
that the forward_char function is executed before the dot is inserted.
Therefore, the txc command works a little differently than either txb
or tx, because the cursor is not automatically moved three times.

Specification for &na

Any defcom definition can contain a line beginning with &na to specify
how a numeric argument is to be handled by the command. The following
are the three possible formats for use of &na:

&na (&repeat)
&na (&pass name &default value)
&na (&ignore)

The first format, using &repeat, tells PEEL that a numeric argument
specifies the number of times that action is to be performed. If no
argument is specified when the command it invoked, then the action is
performed once.

5-5 Second Edition



EMACS EXTENSION WRITING GUIDE

The second format, using &pass, specifies that a numeric argument is to
be assigned to the variable with the specified name, and that if no
numeric argument is given, then the specified value is to be assigned
to the variable name.

Note

The variable named in the &pass option is treated as a "local
variable" by PEEL. This means any value assigned to this
variable is valid only within the action performed by that
command. If you have elsewhere used a variable with the same
name, then that variable is unaffected. We will discuss local
variables in greater detail later in this chapter.

The third format, using &ignore, specifies that any numeric argument
supplied with the defcom command is to be ignored.

Prompting for an Argument Value

All the methods for handling numeric arguments that we have described
so far use the {ESC} n convention for supplying the numeric argument
when the command is invoked. Following is a totally separate method
for supplying a numeric argument to a command.

When the command is invoked, the command prompts the user for the value
of the information needed, and allows the user to type whatever value
is desired. To understand how this works, suppose we rewrite the
definition of txc as follows:

(defcom txd
&doc "Move cursor specified # chars, insert dot"
&args (
(curmov &prompt "Type amount of cursor movement”
&default 3 &integer)
)

(do_n_times curmov (forward_char)
(self_insert \.)

Notice that 1lines three through six of this definition contain an
option beginning with &args. This option specifies a great deal of
information, as follows:

® &args specifies that when the command is invoked it will, as

part of its action, request information to be typed at the
terminal.

Seocond Edition 5-6

J



3

WRITING EXTENSIONS

® curmov is the name of a variable into which PEEL stores whatever
value is typed at the terminal when the command is invoked. You
may use your own choice for the variable name. (As with the
&pass option of &na, the variable specified here is a local
variable.)

e s&prompt and the following text specify the text that PEEL will
display when the command is invoked in order to prompt the user
for the desired information.

e &default 3 specifies that after the prompt is displayed, if the
user types {RETURN} without typing a number, then a default
value of 3 will be assigned to the variable curmov.

e &integer specifies that the value to be typed in response to the
prompt must be an integer value.

When the command txd is invoked, PEEL displays the following 1line at
the bottam of your screen:

Type amount of cursor movement:

The user may then type an integer value that PEEL receives and assigns
to the variable curmov. Then, the txd function uses this value to
determmine the number of times to invoke the forward_char function.

Specifications for &args

As you can see, &args allows you to specify an argument by an entirely
different method from &na. You may use both &na and &args in the same
defoom definition. Although a command defined by defcom may use only
one numeric arqument of the type described by &na, it may use any
number ot argquments with &args. Furthermore, the latter arguments may
be integer or string data types.

The format ot &args is as follows:

&args ( (specl) (spec2)...)

That is, &args is followed by a parenthesized list of one or more
specifications, and each ot those specifications is itself enclosed in
parentheses. The format of a parenthesized specification 1is as
follows:

(name &prompt string
&default value

type)

5-7 Second Edition



EMACS EXTENSION WRITING GUIDE

This specification contains the following information:

e Name is the name of a variable to which the value typed at the
terminal is to be assigned.

® String is the text of the prompt string that PEEL will use to
prompt for the argument value.

e Value is the default value to be assigned to the variable in

case the user responds to the prompt by hitting {RETURN} without
typing any value.

° is the data type of the value that the user must type at

e terminal in response to the prompt. Note that the default

value specified by value must have a corresponding data type.

The data type must be one of the following: &integer, &string,

or &symbol; the corresponding data types for value are integer,
string, and atom, respectively.

FORMAT OF DEFCOM

The full format of the defcom function is:

(defcom command_name
&doc documentation_string
&na  (&repeat)
(&pass name [&default value])
(&ignore)
&args ((name &prompt string
&default value
&string | &symbol | &integer )

cs e

&chararg

body)

The elements have the following meaning:

defcom Is the name of the special function that defines a
command, establishing the oommand's name, its
documentation sequence, and argument acceptance mode.

sdoc Documents what the command does. The text of the

documentation string will appear in such help
facility texts as apropos and explain_key.

Seoond Edition 5-8

J

J



WRITING EXTENSIONS

&na Tells EMACS that this defcom accepts a numeric
argument for the command. It also specifies how the
argument will be handled. The following are keywords
used in the &na clause:

&repeat Tells EMACS how many times it
should repeat the body of the
defcom code.

&pass Tells EMACS the numeric argument is
to be transmitted to a named
variable. If the &default option
is specified, it gives the default
value to be used if no argument is
typed when the command is invoked.

&ignore Tells defcom to ignore numeric
arguments.

&args Declares a name that will receive text typed at the
terminal. The following are keywords used in the
&args clause:

&prompt Displays the given string in the
minibuffer. The reply to the
prompt becomes the value of the
argument.

&string Says that the argument will be a
string data, type.

&symbol Says that the argument will be a
symbol data type.

&integer Says that the argument will be an
integer data type.

&default Defines the default value for an
arqument. This value will be used
if a carriage return is typed in
response to &prompt.

&chararg Tells EMACS to save the character (the keypath) used
to invoke a conmand. (This is needed for macros that
wish to use the oommand argument for  further
processing.)

5-9 Seoond Edition



EMACS EXTENSION WRITING GUIDE

Note

As currently implemented, PEEL does not
require that &chararg be used. The
character_argument function can obtain the
keypath intormation regardless of whether
&chararg was specified or not.

Further Examples

Here are a few defcom examples that show how its syntax is put
together.

Example 1:

(defcom mark_end_of_word
&doc "places a mark at the end of the current word”
(mark)
(forward_word)
(exchange_mark))

This simple macro executes three statements that place a mark at the
end of the current word, and then return point to where it was before
the command was invoked.

Example 2:

(defcom set_right_margin
&doc "Sets the right margin for word wrapping"
&args ((foobar &prompt "Type right margin value"”
&default 70
&integer))
(setqg £ill_column foobar))

The variable fill_column is a global variable used by the EMACS word
wrapping routines. EMACS uses this variable to determine what the
maximum right margin should be. Thus, you can affect how EMACS does
word wrapping simply by changing the value of this variable. The
set_right_margin command can do that easily.

In this ocommand definition, &args defines an argument called foobar
that is used in the oommand as an intermediate variable that is
eventually assigned to f£ill_column. This works as follows:

e The value of foobar is the number typed in response to the
prompt.

e If a carriage return is typed, the default value is 70.

Second Edition 5-10

J



WRITING EXTENSIONS

o foobar is an integer variable.

Once the value of foobar has been established, the defcom can do its
"work" by setting the variable fill column to the value stored in
foobar.

If a user types a reply that is nonnumeric, EMACS will print an error
message indicating that a conversion error has taken place.

Example 3:

(defcom backward_para
&doc "Move backward a paragraph”
&na (&pass count &default 1)
(if (> count 0)
(backward_paraf count)
else
(forward_paraf (- count))))

This command is used to call one of two functions. The &na accepts a
numeric argument, if one is typed, and assigns it to a variable called
count. If no argument is typed, the default value is 1. If the value
of count is positive, the backward_paraf function is called. However,
if count is negative (meaning that the user wants to go in the opposite
direction) forward_paraf is called.

THE DEFUN FUNCTION

Just as the defcom function can be used to define commands that are
invoked from the keyboard, the defun function can be used to define
functions that can be invoked from other PEEL programs. In other
programming languages, similar capabilities are provided by functions,
subroutines, and procedures.

You have actually been using functions all along in your PEEL programs.
For example:

(forward_char 5)

This function invokes the forward_char function with the argument 5.
The function moves the cursor forward five characters. As another
example:

(+ 2 3)

5-11 Second Edition



EMACS EXTENSION WRITING GUIDE

This function invokes the + function with arquments 2 and 3. This
function returns the value, 5, computed by adding together all the

arguments.

You will learn how to define your own functions. In order to define a
function you must specify several pieces of information, including the
following:

The name of the function. In the examples we have Jjust been
oonsidering, the names of the functions were forward_char and +.

Information about the arguments to the function. For example,
you can specify the number of arguments, and whether some of the
arguments are optional. (Recall that the + function can have
from one to eight arguments. This means that the first argument
is required, and the other seven arguments are optional. Also,
recall that the single argument to the forward_char function is
also optional, with a default value of 1 if you do not specify
it.)

In addition, you may specify what the data type of each of the
arguments is to be. For example, you can specify that the
argument must be an integer, or must be a string, or may be of
any PEEL data type.

What action the function is to take. For example, you can
specify that when the function is invoked, it is to manipulate
the text in your buffer in certain ways, or it is to prompt you
for certain values, or it is to make certain computations. 1In
fact, you can use any other PEEL functions to specify the action
to be taken, even functions that you yourself have defined in
other defun functions.

® What value, if any, the function is to return. If you specify

no return value, then the function automatically returns a null
list.

Format of a Simple Defun

The simplest format of a defun is as follows:

(defun name (argument_list)

action

)

This format consists of the following elements:

Defun is the name of the function that defines a user—defined
function. When the defun is executed, the new function becomes
defined.

Second Edition 5-12

J

J



D

WRITING EXTENSIONS

e Name is the name of the function being defined.

® Arqument_list is the specification for the arguments and
variables to be used with the function. This specification will
be described in greater detail below.

® Action specifies what action the new function is to take when it
1s 1invoked.

Let us look at some examples.

Function Without Arguments

Consider the following defcom example:

(defun up_char ()
(mark)
(forward_char)
(uppercase_region))

This defun defines a new function, called up_char. The purpose of this
function is to convert the character in your buffer at point to
uppercase. As you can see from the definition, the name of the
function is up_char, there are no argument specifications, and the
action proceeds as follows:

(mark)
This marks the current position in your text buffer.
(forward_char)

This moves the point ahead one character, thus defining a region
consisting of that single character.

(uppercase_region)

This converts that single character to uppercase.

5-13 Second Edition



EMACS EXTENSION WRITING GUIDE

Function With a Single Argument

In order to use defun, you define a function that has one argument,
using the following format:

(defun name ((argname type))
action

)

In this format, ar e is the name of the argument that you are
defining, and type is the data type of the argument, usually integer or
string. -

For example, we can increase the usefulness of the up_char function
previously defined by letting it take an argument equal to the number
of characters to be converted to uppercase. Consider the following:

; up_chars converts the specified # chars to upper case
(defun up_chars ((count integer))

(mark)

(forward_char count)

(uppercase_region))

In this example, the function up_chars is defined as having a single
argument, called count, which is of the integer data type. The action
for up_chars is the same as the action for the previously defined
function up_char, except for the following line:

(forward_char count)

This line moves the point ahead by the number of characters specified
in the argument, rather than just one character. The result is that
the marked region becomes the number of characters specified by the
argument, and that entire region is oonverted to uppercase. For
example:

(up_chars 8)

This invocation of the function defines a region consisting of the
eight characters following point and converts them to uppercase.

Second Edition 5-14

J

J

J



D

WRITING EXTENSIONS

Functions With Several Arguments

The following is the format of defun for a function with two or more
arguments:

(defun name

((argnamel typel) (argname2 type2)...)
action

)

As you can see, you simply specify the names of each of the arguments,
and the corresponding data types.

Function With a Single Optional Argument

We have previously defined the up_chars function as a function that
takes a single integer argument, and converts that number of characters
to uppercase. Let us now change that example so that the argqument is
optional and, if not specified, defaults to 1.

The format ot the defun that defines such a function is as follows:

(defun name (&optional (argname type))
action

)

The only difference between this format and the format with a single
required argument is the insertion of &optional at the beginning of the
argument list.

Following this format, here is the new definition of the up_chars
function:

(defun up_chars (&optional (count integer))
(mark)
(if (null count) (setqg count 1))
(forward_char count)
(uppercase_region))

The first line of this definition now specifies that the single
argument, count, is optional. Notice, however, there is an extra line
in the action portion of the definition:

(if (null count) (setq count 1))

5-15 Second Edition



EMACS EXTENSION WRITING GUIDE

This PEEL statement specifies what is to happen if the function
up_chars is invoked with no argument. In such a case, PEEL gives the
argument variable count a value equal to the null list; namely that if
count equals the null list, it should be set to the integer value 1.

Functions With Some Required and Some Optional Arguments

The format of the defun which defines a function with several
arguments, some of which are optional, is the same as defun with
several required arguments, with the following exception: you insert
the key word &optional between the last required argument and the first
optional argument in the last argument list. Note that, as you would
expect, PEEL requires that all optional arguments follow all required
arguments in the argument list.

Local Variables

Suppose you detine a function which contains the following as part of
its action specification:

(setqg direction -1)

This is an assignment statement that assigns the integer value -1 to
the PEEL variable direction. You can then use that variable in other
statements in your function definition. 1In this respect, PEEL is no
different from other high-level languages where values are assigned to
variables.

The problem is the following: suppose you are using many PEEL
functions and, by coincidence, one of those other functions also uses a
variable named direction. In that situation, you may have a serious
but subtle programming bug, because one function would be changing the
value of a variable used by another function.

The solution to this problem is to use local variables. When you
define a local variable in a function, you are specifying: 1) that
local variable may be used only within the function being defined; and
2) if a variable by the same name is used in a different PEEL function,
PEEL is to treat that as a completely different variable, just as if it
had a different name.

The format of a defun function definition with local variables is as
follows.

Second Edition 5-16

J

J



A

WRITING EXTENSIONS

(defun name ( args

&local (varl typl) (var2 type2)...)
action

)

The elements of this definition are as follows:

defun and name are, respectively, the function defihing keyword
and the name of the function you are defining, as previously
described.

args is the argument list as previously described. There may be
no arguments or one or more arguments, and the keyword &optional
may appear to specify that the argquments that follow are
optional.

&local is the keyword specifying that the variable names that
follow are local variables, not arguments.

(varl typel) is the name of the first or only local variable and
its data type.

(var2 typ2)... represents other local variables, if any, and
their data types.

action is as previously described.

A function definition in that format may use any of the variables
defined as local variables in the &local clause without fear of
disturbing the values of variables in other functions that happen to
have the same names.

For example, here is a fairly sophisticated example of a function that
centers the line on which point lies:

(defun center_linef (&optional (count integer)

&local (line string)
(direction integer))
(if (< count 0)
(setq direction -1)
(setg count (- count))
else
(setq direction 1))
(do_n_times ocount
(setq line (current_line))
(begin_line)
(kill_line)
(whitespace_to_hpos (/ (- 80 (string_length line)) 2))
(insert line)
(if (< direction 0)
(prev_line)
else
(next_line))))

5-17 Second Edition



EMACS EXTENSION WRITING GUIDE

Since this example contains a number of new concepts and functions,
let's go through it step by step and see how it works:

e The function, which is named center-linef, takes one optional
argument, called ocount, and has two local variables, called line
and direction.

The purpose of this function is to center one or more text lines
on the page. The optional argument count specifies the number
of consecutive lines to be centered. The argument count may be
either positive or negative, to indicate that lines following or
preceding point, respectively, are to be centered.

line is a 1local variable with the string data type, and
direction is a local variable with the integer data type. As we
shall see, the variable line will be assigned the text of the
line in the text buffer being centered, and the variable
direction will be used as a flag to indicate whether the
argument ocount is positive or negative.

e The if clause tests whether count is positive or negative, and
sets the variable direction accordingly. In addition, if count
is negative, then it 1s reassigned so that it is positive.

e The do_n_times function defines a loop to be executed once for
each line being centered, as indicated by the value of count.

® The statement (setq line (current_line)) uses the local variable
line. The function current_line is a standard PEEL function
that returns a string value equal to the text in the line on
which point lies. Therefore, the setq statement assigns the
text of the current line to the local string variable line.

e The next two statements move point to the beginning of the line
and delete that line.

® The next statement is more complicated than the previous ones,
because it uses several different functions in a nested form.
Let us look at it one step at a time.

The function (string_length line) uses the standard PEEL

function string_length to determine the number of characters in
the text line being centered.

Second Edition 5-18

J

J



D)

WRITING EXTENSIONS

Next, the - function is used to subtract this number of
characters from 80. Note that we are assuming that you wish to
center your line in a field 80 characters wide. If this
assumption is incorrect, you would have tc use a different
number or expression here.

Next, the / function divides the quantity computed so far by 2.
This equals the number of characters of white space that will
appear on either side of the centered line.

Finally, the whitespace_to_hpos function, which takes as its
argument the quotient from the division by 2, inserts blank
characters so that point is positioned precisely to center the
reinserted text.

@ Next, (insert line) reinserts the text (stored in the string
variable line) of the line being centered.

e Finally, the if clause moves point either to the previous line
or to the next line, depending upon whether the original value
of the argument count was negative or positive.

Note that this example illustrates the following interesting point
about local variables: from the point of view of the action taken by
the function, there is no real difference between an argument and a
variable. Either can be assigned a value, and either can be used in
any statement in the action specified for the function. The only
difference is the obvious one: an argument may be assigned an initial
value by the argument list when the function is invoked, while a local
variable cannot.

Functions That Return Values

All the functions that we have defined so far perform some sort of
action but do not return a value. (In LISP terminology, this means the
functions have a side-effect but no effect. More strictly speaking,
the effect, or value, of each of these functions is a null list.)

Now let's see how you define a function that returns a value you
specify. The format is as follows:

(defun name (...
&éreturns type ...)
action
return value))

5-19 Second Edition



EMACS

EXTENSION WRITING GUIDE

The explanation of this format is as follows:

As an

Defun name is as previously described.

The list in parentheses following the name oontains different
types of information, such as specifications for arguments and
local variables, as we have already seen. Now we are adding a
new piece of information in the form:

&returns type

This specifies the data type that this function will return. 1In
place of type, you should specify integer or string or other
data type that the function might return.

The function action oconcludes as follows:
(return value))

When the function you are defining is invoked, the return
function will terminate the action and return, as the value of
the function, the value you specified as the argument to return.
The value may be a oconstant or expression, but its data type
must be the same as the data type you specified in the &returns
option.

example, let's define a function that counts the number of spaces

to the left and to the right of point, and returns that count as the

value

.
!
.
’

of the function. Here is the definition of the function.

count_spaces takes no arquments and returns a count of
the number of spaces around point

(defun ocount_spaces

(¢returns integer &local (count integer))
(save_excursion
(do_forever ; move back over spaces
(if (looked_at "™ ") (back_char)
else (stop_doing)))
(setg count 0) ; init space counter
(do_forever ; move forward over spaces
(if (looking_at " ")
(forward_char) (setg count (1+ count))
else (stop_doing))))
(return oount))

Second Edition 5-20

J

)



)

WRITING EXTENSIONS

This example defines a function called ocount_spaces. This function
works as follows:

The list in parentheses following the function name count_spaces
indicates that the function takes no arguments, returns an
integer value, and uses one local integer variable called oount.

In many of the examples we have seen, the action specified by
the function moved point in the text buffer and left it in an
unpredictable place. Often this is inconvenient, and you would
prefer that a function leave point where it was when the
function was first invoked. One method of doing this is to use
the following:

(save_excursion action)

When you use the save_excursion function, as we have done in
count_spaces, PEEL remembers where the point 1is, performs the
action you specify, and then returns the point to wherever it
was before the action occurred.

The purpose of the first do_forever loop is to move the point to
the left until a character other than a space is found. The
(looked_at " ") function detemines whether the character
preceding the point is a space or not, and returns a Boolean
value to indicate that. The (back_char) function moves the
point back one character if that character is a blank, and the
(stop_doing) function terminates the do_forever loop if the
character was not a blank.

The first setq initializes the oounter variable ocount to O.
When we are finished, count will contain the number of spaces we
are counting.

The next do_forever loop moves the point forward, oounting
spaces, until a character other than a space is found. The
(looking_at " ") function returns a truth value indicating
whether or not the character at point is a blank. If it is a
blank, then (forward_char) moves the point one character ahead,
and (setg count (1+ count)) increases the oounter by one to
indicate we have passed over one space.

Finally, (return ocount) terminates the function invocation,
returning the value of count to the caller.

5-21 Second Edition



EMACS EXTENSION WRITING GUIDE

Another Example of &returns

Consider the following example:

(defun move (&local (movement string)

&returns Boolean)
(setq movement (prompt "Type a space, t, b, £, or q"))
(select movement
non (delete_char)
(insert " ")
(return true)

"tll

npn (insert "T")
(delete_char)
(return true)

"f“

g (forward_char)
(return true)

"bll

ngn (if (" (beginning_of_line_p))

(back_char)

(return true)

“qll

Q" (return false)

otherwise

(info_message "unknown response")
(sleep_for_n_milliseconds 1000)
(return true)))

This defun defines a function called move that moves point or modifies
the text buffer depending upon the character typed in at a prompt.
This example uses some of the interactive features of PEEL that we will
be studying in a later chapter. The function works as follows:

The list in parentheses following the function name indicates
that the function has no arguments, uses one local string
variable called movement, and returns a Boolean value.

The statement (prompt "type a space, t, b, £, or g") types the
specified character string in the minibuffer at the bottam of
your display screen, and then waits for your to type a character
in response.

The setq statement assigns the character typed in response to
the prompt to the string variable called movement.

The select statement chooses an action to be performed, based on
the value of the variable movement.

Second Edition 5-22

J



Y

WRITING EXTENSIONS

e If the character typed was a space, the function replaces the
character at point with a space. It does this by deleting the
character at point and returning a space. The function returns
a true Boolean value to indicate the operation is successful.

® If the character typed was "t" or "T", then the function
replaces the character at point with "T".

e For "f" or "F", the function moves point ahead one character.
Incase of "b" or "B", the function moves point back one
character, although it leaves point unchanged if point is
already on the first character of the line.

e For "g" or "Q", the function returns a false Boolean value.

e Finally, in the case of any other input value, the function
displays the message "unknown response™ in your minibuffer,
leaves the display for 1,000 milliseconds (one second), and then
returns with a true Boolean value.

As you can see, the only case where this function returns a false
Boolean value is when, in response to the prompt, the user types "q" or
"Q" for quit.

How would you use a function like move that we have just described?

You would probably want to call it over and over again until q is
typed. For example, consider the following:

(do_forever
(if (© (move)) (stop_doing)))

As you can see, this form calls the move routine in an infinite loop,
and terminates only when g is typed.

FORMAT OF DEFUN

The full format of the defun function is as follows:

(defun name ((argumentl typel) ...
&optional ...
&rest ...
&quote ...
&eval ...
&returns type
&local (variablel type2) ... )
statements_of _defun_program
ses )

5-23 Second Edition



EMACS EXTENSION WRITING GUIDE

The words in the above structure have the following meaning:

defun Builds a function with the specified name using
the given argument list and body.

argument Declares the name to be used for a parameter
passed to this defun from the defun or defcom
that calls it.

type Declares the data type of argument. Data types
are discussed later in this chapter.

&optional Says that all arguments past this point are not
required. If they are not there, they are set
to NIL.

&rest Tells EMACS that it should take the rest of the
arguments and put them into a 1list, as for
example:

&rest (r list)

&quote Tells EMACS that it should only bind all
following atoms, not evaluate them. To resume
evaluation of atoms, use the &eval argument.

&eval Shuts off the &quote argument used in defuns so
that all following arguments are evaluated.

&returns Specifies the data type of the information
returned to the calling routine. (This is
explained in depth later in this chapter.)

&local Says there are no further arguments in a defun
argument list, and that the remaining items of
information are variables that will have only a
scope of the current function.

COMBINING DEFCOM COMMANDS WITH DEFUN FUNCTIONS

We have now seen how to use defcom to define a ocommand and defun to
define a function. It is common practice for PEEL programmers to set
up the defcom definition so that it does no work other than to call a
function defined by defun. This is very convenient because it puts all
the coomand 1logic into a function that can then also be called from
other places, if desired.

For example, here is a command that indents one line of your text
buffer the same as your previous line.

Second Edition 5-24



3

WRITING EXTENSIONS

(defcom indent_relative
&doc "Lines up text or tabs text over more"
&na (&pass count &default 0)
(indent_relativef count))
(defun indent_relativef ((count integer)
&local (indentation integer))
(prev_line)
(begin_line)
(skip_over_white)
(setg indentation (cur_hpos))

Finds column indent of
previous line, saves it

(next_line) Goes to beginning of next
(begin_line) line

(white_delete) Deletes space, if there
(whitespace_to_hpos indentation) Indents line

(if (< count 0)
(setqg count (- count)))
(if (> count 1)
(do_n_times (1- count)
(type_tab))))

Only positive values for
count are used

Indents the number of
additional tabs if
there is an argument

WO NS NP N N NE N N W “o w0

As you can see, the defcom defines a function called indent_relative.
The action specified for the command does nothing more than pass the
numeric argument to a function called indent_relativef. The &doc line
of the command provides user documentation containing text for the help
facilities apropos and explain_key. The &na line specifies that the
numeric argument, whose default value is 0, is to be assigned to the
variable count. The last line invokes the function indent_relativef
with the argument count.

The defun defines a function called indent_relativef that works as
follows:

e The list in parentheses following the function name indicates
that the function has one integer argument called count and one
integer local variable called indentation.

® When the function is invoked, the prev_line and begin_line
functions move point to the beginning of the preceding line.

e The skip_over_white function moves point to the first nonblank
character on that 1line. This is the method used to determine
how far the preceding line is indented.

® The cur_hpos function returns an integer value equal to the
horizontal position of point. In effect, this counts the number
of leading spaces on that line. The setq statement assigns that
value to the variable indentation.

® The next_line and begin_line functions move point to the

beginning of the next line, the line on which point originally
lay when the function indent_relativef was invoked.

5-25 Second Edition



EMACS EXTENSION WRITING GUIDE

e The white_delete function deletes any leading spaces that
already appear at the beginning of that 1line. The
whitespace_to_hpos function inserts as many blanks as are
specified by the variable indentation. Since indentation equals
the number of blanks on the preceding line, this statement
aligns the current line with the preceding line.

e The if statement sets count equal to its absolute value.

® The last if statement indents by additional tab amounts if count
is greater than one.

In the above example, notice the extensive use of the semicolon (;).
This character is wused to delimit oomments. It tells EMACS to
disregard any text from it to the end of the 1line. You may use
comments anywhere they are needed.

PEEL, DATA TYPES

In this and preceding chapters, we have illustrated some of the more
commonly used PEEL data types. The ones we have illustrated that are
most like data types in other high-level languages are integer and
string data types. However, we also have discussed data types that are
unique to PEEL, such as the list data type.

Now let us summarize the PEEL data types.

The following five data types exist in some programming languages:

integer Can ocontain a positive or negative whole number

string Can contain a string; that is, a collection of
characters

character Can contain one character

Boolean Can contain a true or false value

array Can contain multiple occurrences of a data type

The following three data types are used in LISP-style programming.

atom Can contain the basic structural unit of a
program

list Defines a variable that will contain a list

function Defines a variable that can contain a function

Second Edition 5-26

J



)

WRITING EXTENSIONS

The following two data types are unique to PEEL.

cursor Can contain a value that indicates a place in a
buffer

dispatch_table Can contain an array-like variable that holds
entries that tell EMACS what functions it
should call when a keystroke invokes a function

The data type "any" can have any one of the above data types assigned
to it.

Finally, handler and window are internal data types used by EMACS. A
handler is a special kind of function, while a window is the part of a
screen used to display a buffer. For example, you have two windows
when you split the screen.

Because many PEEL statements only operate on certain data types, it is
sometimes necessary to check to see what kind of data is being acted

upon. The way you check a variable's data type is with the typef
function. For example:

(typef variable)

This statement returns a number between 1 and 14, as follows:

1 any 8 list

2 Boolean 9 cursor

3 character 11 dispatch_table
4 integer 12 handler

5 string 14 window

6 atam 15 array

7 function

All of these have symbolic definitions to aid oomparisons. For
example, Type.integer is an atom that has a value of 4 while
Type.function has a value of 7. This means that you can use mnemonics
when writing code. For example:

(if (= (typef atom) Type.integer) ...

Notice that the word "Type" begins with a capital letter.

5-27 Seocond Edition



EMACS EXTENSION WRITING GUIDE

GLOBAL AND LOCAL VARIABLES

Generally speaking, a global variable is one whose value can be
referenced in and changed by any PEEL command or function, while a
local variable is one whose value can be referenced in or changed by
only the ocommand or function in which the variable is used. 1In this
section, we will examine how to use global and local variables in PEEL
programs.

Global Variables

When a variable always has meaning, it is referred to as a global
variable. Here are two examples used in the current EMACS libraries:

token_chars Globally establishes a set of 63 characters
those forming valid tokens. (The characters
are A-Z, a2z, 0-9, and the underscore
character.)

whitespace Globally establishes " " (the space character)
as the definition of blank space. Sometimes
whitespace is changed to include newline or
other characters.

These variables allow values to be used in a variety of contexts. For
example, token_chars is used by all functions that act upon words. For
the purposes of forward_word, or delete_word, a word is a token, and a
token is any string made solely of token characters. The variable

whitespace is used by such functions as delete_white_left and
skip_over_white.

The value of a global variable remains after a function has finished
executing. Thus, whitespace always remains available to every function
that needs it. TE, however, one function changes the value of
whitespace, all other functions using it thereafter will use the
changed value.

How to Set Global Variables: A global variable is established by
assigning a value to a variable. For example:

(setqg rightmost_column 70)

This establishes a variable called rightmost_column and equates the
name rightmost_column to the value 70. Stated in another way, all that
you do is make up a name and assign something to it.

Second Edition 5-28

p,



WRITING EXTENSIONS

Limitations of Global Variables: Many books on structured design and
structured analysis decry the use of common blocks and common storage
because they contain things that are, in effect, global variables. The
reason they are not too well liked is as follows:

Suppose you have three subroutines, called A, B, and C, and A
calls B then C. Assume B modifies a global variable in
anticipation for some action of C. Obviously, this will work
fine. However, what happens if a new routine, D, is written
and it modifies the same value and is called between B and C?
This means that the application programmer must study B and C
carefully, learning how they share global variables, to avoid
accidentally interfering with any of them. If subroutines B
and C had been constructed to pass information only through
argument lists, avoiding global variables, the application
programmer would not need to be oconcerned about global
variables at all. Stated in a different way, global variables
mean that routines have less control over their data and that
they cannot be considered "black boxes".

Sometimes, as with token_chars and whitespace, the variable pertains to
the entire environment. 1In this case, and probably only in this case,
a global variable should be used.

Local Variables

In most cases, it is convenient to define variables in which you can
store values for a limited time. By this we mean variables that are
used only in the command or function you are defining, and that do not
affect variables in other commands or functions, even when those
variables have the same names.

Such variables are called local variables, and we have discussed them
earlier in this chapter. We have identified three ways to define local
variables, all illustrated earlier in this chapter:

® In a defcom, the variable specified with the §pass option of the
&na clause is local to the defcom in which the clause appears.

® In a defun, all the arguments to the function you are defining
are local variables.

® Also in a defun, local variables may be explicitly specified by
means of the &local option.

If your command or function uses a variable that is not specified as
local by any of the means just described, then PEEL considers it to be
a global variable, and you may have conflict with a global variable of
the same name used in a different command or function.

5-29 Second Edition



EMACS EXTENSION WRITING GUIDE

Properties of a Variable

Any PEEL variable has three properties:
® The name of the variable
® The value of the variable
® The attributes of the variable
There are two kinds of attributes:
e The dat@ type of the variable, which indicates what type of
value (integer, string, 1list, any, and so forth) can be stored
as the value of the variable

® The scope of the variable, the portion of your PEEL, program in
which you may reference or change the value of the variable.

In the remainder of this chapter, we will discuss saving and

reinstating the properties of a variable. Keep in mind that we will be
discussing all of the properties just described.

Scope of a Variable

As we have noted, the scope of a variable is that portion of your PEEL
program in which you may reference or change the value of the variable.
There are two basic kinds of scope, local and global.

If a variable is specified local to a defcom command or a defun
function, using one of the methods described above, then the scope of
the variable is local. In addition, the value of the variable may be
referenced or changed only by the statements within the command or
function in which the specification occurs. If a local or global
variable with the same name is used in a different PEEL command or
function, then it is treated as a completely different variable (with a
different value and attributes) just as if it had a different name.

If a variable is used without any specification that it is local, then
PEEL considers it to be a global variable. 1In this case, the scope of
the variable is your entire PEEL program, with the following exception:
any command or function that specifies a local variable with the same
name as the global variable cannot reference the value of the global
variable. Therefore, the statements of that command or function are
not included in the scope of the global variable.

Second Edition 5-30

J

J



A

WRITING EXTENSIONS

Separation of Functions

In some procedural languages, like PL/I, it is possible for one
procedure to be imbedded inside another procedure. This usually means
that the imbedded procedure "inherits" the local variables of the
procedure in which it is imbedded.

This is not the case in PEEL. All functions and oommands are
completely external to one another, and it is not possible for one
function or command to be imbedded in another function or command.
Therefore, no inheriting of variables ever takes place in PEEL.

Allocation and Freeing of Local Variables

Whenever a command or function is invoked during execution of your PEEL
program, PEFL automatically allocates space for any local variables
specified within the defocom or defun for that command or function.
This space holds all of the function's properties, including its name,
its value, and its attributes. During execution of that command or
function, whenever that variable name is referenced, it always refers
to the local variable whose space has just been allocated.

When the command or function has completed, any space allocated for the

name, value, and attributes of 1local variables is freed. In
particular, any value assigned to local variables is lost permanently.

RECURSION

Many high-level languages permit you to define recursive functions and
procedures, and PEEL is no exception. Let us see how you can use them.

Recursive Definition of Factorial

In a previous chapter we showed you how to define a simple PEEL program
that computes the factorial function. Now we are going to show a new
PEEL function that also computes factorial, but which does so in a
recursive manner. This example will therefore allow us to illustrate
recursive functions in PEEL. The new PEEL function is based on the so
called recursive definition of the factorial function. This definition
is as follows:

0! =1
if n>0, then n! = n * (n-1)!

5-31 Second Edition



EMACS EXTENSION WRITING GUIDE

This is a two part definition. The first line gives you the value of 0
factorial, namely 1. The second line gives you a rule for computing
your factorial where n 1is greater than 1: namely, it tells you to
multiply n by the value of (n-1) factorial.

If you have never seen this definition before, it may appear to be a
circular definition, that is, that it defines factorial in temms of
factorial. Actually that is not true. The definition tells us what
the value of 0 factorial is, and, for positive integers, it tells us
what the value of factorial is in temms of the factorial of smaller
integers. Thus, the factorial of a given number is never defined in
terms of itself. For example, how would we use the above definition to
compute the value of 3 factorial? Using the second line of the
definition, we would get the following:

This does not give the value of 3 factorial, but it does tell us how to
compute the value of 3 factorial if we know the value of 2 factorial.
Applying the second line of the definition again, we get:

3!

o

AN WW
* %

2!
(2 * 11)
1!

This reduces the problem to computing the value of 1 factorial.
Applying the definition again gives us:

3! 1
(1 *0!)
0!

i
* % *

(=)W= We)

This gives us the value of 3 factorial in terms of the value of 0
factorial.

However, now we can apply the first line of the recursive definition of

factorial which tells us what the value of 0 factorial is. This gives
us:

3!

Ao
* %
o

G

Thus, we know the value of 3 factorial is 6.

Second Edition 5-32

J

J



3

WRITING EXTENSIONS

Similarly, the recursive definition of factorial given above can be
used to ocompute the factorial function for any nonnegative integer.

Factorial Command and Function

Here are a PEEL command and a PEEL function that oompute factorial
using the recursive definition we have just given:

(defcom compute_a_factorial
&doc "This function computes factorials"
(print (factorial (prompt_for_integer "Type an integer" 1))))

(defun factorial ((n integer)
&local (temp integer)
&returns integer)
(if (=n 1) (return 1))
(setq temp (* n (factorial (1- n))))
(return temp))

This example creates a defcom and a defun. The function of the defcom
is to prompt the user for an integer and pass it to the factorial
function. The factorial function does the work and ultimately returns
a number that is printed by the defcom.

Look carefully at what happens in the defun. Assume that you are
starting by asking for 10!. In the first invocation, n equals 10.
Therefore, the function sets temp to the value of 10 times the number
returned by the second invocation of factorial. However, factorial is
now invoked with a value of 9, meaning that 10! now equals 10 times 9!.

The second time factorial is invoked, n equals 9. The same procedure
is gone through again, so that 9! is interpreted as 9 times 8!. This
continues until n is equal to 1. Only at this time does EMACS actually
begin returning values. In all cases, the very first value returned is
1. However, this is returned to the factorial that invoked it, and the
multiplication of 2 times 1 is performed. This value is returned, then
it is used in the multiplication of 3 times 2, and so on.

Words tend to get in the way when talking about recursion. The
following illustrates the steps taken.

5-33 Seocond Edition



EMACS EXTENSION WRITING GUIDE

(* 10 (factorial 9))
(* 9 (factorial 8))
(* 8 (factorial 7))

(* 2 (factorial 1))
(* 21)
(* 3 2)
(* 4 6)

(* 10 362880)

As you can see, two things are happening. The first is that the
factorial is unwound until EMACS gets a factorial that can be computed.
In this case 1!. At this point, EMACS traces its path back until it
reaches the starting point. '

Also, at each invocation of factorial, new variables for n and temp are
created. When this happens, the old values are saved.

Second Edition 5-34



B

Interactive I/0

In traditional programming languages, I/O means taking information and
writing it to a file in a variety of forms. Information can be blocked
or unblocked. There also can be many different kinds of data; for
example, characters, floating-point numbers, integers, double-precision
numbers, complex numbers, and the 1like. This information can be
written in streams or it can be written as records.

In most cases, the information in the file is structured. For example,
in PL/I or QOBQL, the data might be organized something like:

1 EMPLOYEE.
2 NAME.
3 LAST-NAME.
3  FIRST-MNAME.
3  MIDDLE-INITIAL.

2  ADDRESS.
3  NUMBER-AND-STREET.
3 CITY.
3  STATE.
3  ZIP.

The file, then, consists of information that conforms to a structure.
While the information differs from occurrence to occurrence, the
structure of the information does not change. Moreover, the data types
of each data item can be different.

6-1 Second Edition



EMACS EXTENSION WRITING GUIDE

In EMACS, the information is completely unstructured and the data in
the files must be ASCII data. This means that primitives for
structured input and output do not exist.

Where EMACS has similarities to traditional programming languages is in
the existence of two kinds of I/0: file (buffer) I/0 and interactive
I/0. The subject of this chapter is interactive I/0. That is, this
chapter describes how a user talks to EMACS and how EMACS talks back to
the user. Buffer 1/0 is discussed in the next chapter.

When EMACS displays a file or buffer, it divides the screen into two
parts. The first part is the top 21 lines of the screen. This is
where text appears. The next line is the status line and the remaining
two lines are the minibuffer. It is here that you type responses to

prompts.

THE MINIBUFFER

When typing a command that requires a response (such as query_replace),
EMACS prints a message in the minibuffer that tells you what to type.
It can then read your response and use that response to perform a
function. EMACS also uses this area for printing messages that tell
you what to do. In other cases, this area is used for printing error
messages.

How to Write to the Minibuffer

The following statement writes a message to the minibuffer:
(info_message text)

text can either be characters delimited by double quotation marks or a
string variable.

Two problems can occur when using info_message. The first is that
something else may come along and write over the message before a user
has a chance to read it. For example, two messages are produced by an
extension within a short period of time. The way around this problem
is to use the following statement right after the info_message:

(sleep_for_n_milliseconds integer)

This puts EMACS to sleep for the number of milliseconds spec@fied. In
this way, you can guarantee that the first message will not be
overwritten too quickly.

Second Edition 6-2

J



)

INTERACTIVE I/0

The second problem is that the text printed by info_message can stay
around too long. For example, in the describe function, a message is
printed in the minibuffer. When EMACS returns the user to the place
where describe was invoked, the message should disappear. The way you
get the message to disappear is by writing a null info_message to the
screen:

(info_message "")

This statement overwrites the old message with a blank line, which, in
effect, removes the message.

Promptin

When creating an interactive program in a language such as COBL, you
have to write one statement that prints a prompt. To receive data from
the user, you have to write a second statement that accepts information
from the terminal. Because it does not make a lot of sense for a
program to want to accept data without telling the user what should be
typed, EMACS oontains several functions whose purpose is to print a
message and accept the information typed at the temminal. These
functions are:

Function Action

prompt Displays a message and returns what the
user types as a string.

prompt_for_string Displays a message and returns what the
user types as a string. This function
lets you specify a default value for
the string.

prompt_for_integer Displays a message and returns what the
user types as an integer. This
function lets you specify a default
value for the integer.

prompt_for_symbol Displays a message and returns what the
user types as an atom. This function
lets you specify a default type for the
atom.

6-3 Second Edition



EMACS EXTENSION WRITING GUIDE

Here are two examples:
Example 1:
(setq foo (prompt "What is your name"))

This form would print "What is your name" in the minibuffer. After you
type your name, your name would be assigned to the string variable foo.
Notice that the following is not correct if you intend foo to be used
as an integer variable: o

(setqg foo (prompt "What is the right margin"))

The reason this does not work is that EMACS assumes that the value of
foo is to be a string where you want it to be a number. What would
work is shown in Example 2.

Example 2:
(setqg foo (prompt_for_integer "What is the right margin" 70))

This tells EMACS that the response is an integer. Notice the number
70. This is the value that will be used if someone types a carriage
return,

For all prompting functions, the side-effect is the printing of the

message and the effect is returning what was typed in response to the
prompt.

Read Functions

Often, you want to read a character from the screen and return this
value. For example, the settab and describe functions both use their
own readers and handle what is typed in their own ways. The two
functions that can be used for this are:

Statement Action
assure_character Returns the next character typed by the
user and inserts it into the buffer.

This waits for a user to type the
character and returns the character.

Second Edition 6-4



b

INTERACTIVE I/0

read_character Reads a character from the terminal.
It returns the resulting character but
does not insert it into the buffer.

Once again, here is the move routine from the tab package. This time,
however, you will see how the reader is actually implemented.

(defun move (&local (movement string)
&returns Boolean)
(info_message "Type a space, t, b, £, h, r, 2, or q")
(setq movement (char_to_string (read_character)))
(select movement
non (delete_char)
(insert " ")

otherwise
(info_message "unknown response")
(sleep_for_n_milliseconds 1000)
(return true)))

The one new thing here is a conversion statement that converts the
character data returned by read_character into a string.

Conversion Routines

It often occurs that data is in one form and you need it to be in
another, as the last example illustrated. EMACS contains the following
conversion statements:

Statement Action

char_to_string Converts a character to a string.
integer_to_string Converts an integer into a string.
string_to_integer Converts a string into an integer.

Ctol Converts a character to an integer

between 0 and 255.

ItoC Converts an integer between 0 and 255
into a character.

TtoP Converts an integer between 0 and 127

into a Prime character with the
high—-order bit on.

6-5 Second Edition



EMACS EXTENSION WRITING GUIDE

Ptol Converts a Prime character, which has
the high-order bit on, into an integer
in the range 0 through 127.

high_bit_off Turns off the high-order bit in every
character of a string.

high_bit_on Turns on the high-order bit in every
character of a string.

WRITING OVER THE TEXT AREA

Many times, you want to display some text that is too long to fit on
one line of the screen. In this case, what you will want to do is
overlay the text area with message text. An example of this is the
{CTRL-X} {CTRL-B} command that lists buffers.

EMACS contains four commands for overwriting the text area of the
screen. In all cases, the text printed is written on top of existing
text solely because it needs a place to be displayed. This text never
becomes part of the text in the buffer.

Statement Action

print Prints information on the screen.
EMACS terminates this information with
a carriage return. If you have more
than a screen of data to be printed,
EMACS prints 20 1lines, stops, then
prompts for a space to ocontinue.

prinl This is the same as print except that
no carriage return is printed.

init_local_displays Clears the screen before printing
begins. This command does not pause
after printing a screen of data. This
means that information ocould be lost.
After an init_local_displays, the user
must type a {CIRL-L} to clear the
screen,

local_display_generator Begins printing text at point without
clearing the screen. Otherwise, this
is the same as init_local_displays.

In many cases, you really do not want overprinting. Instead, it is
easier to create a buffer, insert the text into that buffer, and then
bring the user to that buffer. This will be discussed in the next
chapter.

Second Edition 6-6

)

ﬂ



INTERACTIVE I/0

DEBUGGING PEEL PROGRAMS

If you are attempting to debug a 1large PEEL program, and you are
confused by PEEL's occasionally somewhat obscure error messages, there
is a convenient debugging facility you can use.

This facility is based on the fact that you may insert any of the
prompt functions into your program at any point. When your PEEL
program reaches that point, it displays the prompt string and waits for
your reply, as you know.

In response to any such prompt, you may type:
{EsC} {ESC}
At that point, PEEL displays a new pf()mpt, "2PL:". You may then type

any PEEL command.

Alternatively, in response to your debugging prompt, you may type
[{ESC}n] {ESC} X

At that point, PEEL displays a new prompt, "2Command:". You may then

type any EMACS command.

The power of this capability lies in the fact that you may stop your

program at any point with a prompt, and then interrogate variables,

change the value of variables, or even invoke other functions, in order
to determine why your PEEL program is not working properly.

6-7 Second Edition



Manipulating Text
in Buffers

In a buffer, there exist many things you can deal with as "atomic"
entities. For example, at times you might want a character to be the
basic unit; at other times, a word; at still others, an arbitrary
region of text. This becomes more complicated when a context is
applied to these atomic entities. For example, in text, a sentence
terminates with a period, question mark, or exclamation point. In
PL/I, a statement must end with a semicolon. In FORTRAN, the statement
terminator is the end of a noncontinued line.
In EMACS, excluding the libraries, the following entities exist:

e Character

® Whitespace

® Words

e Lines

® Regions

e Buffers
The library file EMACS*>EXTENSIONS>SOURCES>TEXT.EM adds the following:

® Clauses

7-1 Seocond Edition



EMACS EXTENSION WRITING GUIDE

@ Sentences
® Paragraphs

These entities are not sensitive to different programming environments.
(Changing the definition on a temporary basis is the function of modes.
See Chapter 9.)

The whitespace entity is exactly what it sounds like. It is an atom
that contains the space character. (This is a value set by the user
libraries in EMACS*., If you do not use the libraries, the whitespace
atom includes the newline character.)

CHARACTERS

A character is the simplest element to deal with. The
character-oriented statements are:

Statement Action
back_char Moves point back one character.
forward_char Moves point forward one character.
rubout _char Removes the character preceding point.
delete_char Removes the character following point.
twiddle Inverts the position of the two
characters preceding point.
current_char Returns the current character.
WHITESPACE

Because there are few files that do not contain blanks, PEEL has a
number of statements that make dealing with these blanks much easier.
As mentioned previously, whitespace can have one of two system—defined
definitions. In most cases, you will want it to be equal to just a
space (which is how it is set in the libraries). However, if you need
the system—defined definition, you will have to do this yourself. The
old value has been saved in the variable init_whitespace. Therefore,
to restore it, all you need do is add the following statement to any
extension:

(setq whitespace init_whitespace)

Second Edition 7-2



h)

MANIPULATING TEXT IN BUFFERS

(The init_whitespace variable has two characters: the space and the
newline character.) The interesting thing about the whitespace
variable is that you can put anything you want into it and then have
the EMACS whitespace functions treat what you put into it as
whitespace.

The following statements manipulate whitespace or blanks:

Statement Action

skip_back_over_white Moves point backward so that it is
looking at the first character it finds
that is not in whitespace.

skip_over_white Same as  skip_back_over_white except
that it moves forward.

skip_back_to_white Moves point backward so that it is
looking at the first character it finds
in whitespace.

skip_to_white Same as skip_back_to_white except that
it moves forward.

trim Removes spaces from the beginning and
the end of a string.

delete_white_left Deletes backward from point until it
reaches a character not in the
whitespace atom.

delete_white_right Deletes forward from point until it
reaches a character not in the
whitespace atom.

delete_white_sides Combines both delete_white_left and
delete_white_right into one atom.

tab Inserts blanks to the system—defined
tab-stops, which are located every five
spaces. Note that these tabs cannot be
changed. This function is not bound to
{CTRL-1} when you use the TAB library.

type_tab Inserts spaces to user—-defined tab
positions if point is located after the
last tab stop on the line.

insert_tab Inserts blanks from point to the next
tab stop.

The last two functions are in the TAB library.

7-3 Seocond Edition



EMACS EXTENSION WRITING GUIDE

WORDS

In EMACS, a word is defined as an alphanumeric string that is delimited
by a separator. The separators are all punctuation marks, a carriage
return, a space character, or a hyphen. However, an underscore is not
a separator. The basic word operations are:

Statement Action
forward_word Moves point forward one word.
backward_word Moves point backward one word.
delete_word Kills the word in front of the cursor.
rubout _word Kills the word behind the word.

LINES

The way that information is presented on the screen is in lines. This
is what most people think of when they look at a screen of information.
Consequently, EMACS oontains a number of functions for manipulating
lines, moving from line to line, and checking line status. The
following list presents line commands.

Statement Action

next_line Moves point down one line to the first
character on the next line. If point
is on the last line of the file, moves
point to the beginning of the line. It
also returns a Boolean that indicates
if the operation was successful.

next_line_command The same as next_line except that it
tries to retain horizontal position and
will move down from the last line.
This command does not return a Boolean.

prev_line Moves point up a line. This statement
does not retain horizontal position;
that is, point becomes the first
character on the 1line. It returns a
Boolean that indicates if the operation
was successful.

prev_line_command Same as prev_line except that it
retains horizontal position.

Second Edition 7-4

J



MANIPULATING TEXT IN BUFFERS

begin_line Moves point to the beginning of the
current line.

end_line Moves point to the end of the current
line.

goto_line Goes to a specific line in the file;

for example, (goto_line 15).

kill line Kills text from point to the end of the
line. If point is at the end of a
line, this command kills just the
carriage return.

cr Inserts a carriage return.

open_line Inserts a carriage return after point.

current_line Returns the text on the current line.

rest_of_line Returns the text from point to the end
of the line.

stem_of _line Returns the text from the beginning of

the line to point.

first_line_p Returns true if point is anywhere on
the first line in a buffer.

beginning_of _line_p Returns true if point 1is at the
beginning of a line.

end_of _line p Returns true if point is at the end of
a line.
last_line_p Returns true if point is anywhere on

the last line in a buffer.

CLAUSES
The following statements treat clauses as atamic entities. An
end-of-clause is defined as a terminator followed by a space or

end-of-line. A clause temminator is any one of the following
characters:

2?2 o, 0 ()1}

A beginning-of-clause is defined as the text following an
end-of-clause.

7-5 Seocond Edition



EMACS EXTENSION WRITING GUIDE

Statement

backward_clause

forward_clause

forward_kill_clause

backward_kill clause

SENTENCES

Action

Moves point to the beginning of a
clause.

Moves point to the end of a clause.

Kills from point to the end of a
clause. This places the killed text
onto the kill ring.

Kills from the beginning of a clause to
point. This places the killed text
onto the kill ring.

The following statements treat sentences as atamic entities.
end-of-sentence is defined as being a terminator (. ! ?) followed by
a space or end-of-line. A beginning-of-sentence is defined as the text
following an end-of-sentence.

Statement

backward_sentence

forward_sentence

forward_kill_sentence

backward_kill_sentence

REGIONS

A region is an arbitrary area that is specified by the user or

Action

Moves point to the beginning of a
sentence.

Moves point to the end of a sentence.

Kills from point to the end of a
sentence. This places the killed text
onto the kill ring.

Kills from the beginning of a sentence
to point. This places the killed text
onto the kill ring.

An

under

program control. Its main function is ocopying text to a kill buffer.

After it is in a kill buffer, it can be inserted back into a buffer.

Second Edition

7-6

J



MANTPULATING TEXT IN BUFFERS

The region statements are:

Statement Action

mark Places a pointer that identifies one
end of the region.

copy_region Places the text between mark and point
onto the kill ring.

kill_region Places the text between mark and point
onto the kill ring. It also removes

the text from the buffer.

delete_region Kills the text between mark and point.
This statement does not put the text
onto the kill ring.

append_to_buf Takes a region and puts it at the end
of a named buffer. If this command is
given an argument, it does not kill the
region first.

append_to_file Same as append_to_buf, but it writes
the region into a file.

prepend_to_buf Takes a region and puts it at the
beginning of a named buffer. If this
command is given an argqument, it does
not kill the region first.

prepend_to_file Same as prepend_to_buf, but it writes
the region into a file.

The last four commands are contained in the file BUFFER.EM.

CQURSORS

As discussed in the EMACS Reference Guide, a mark lets you create an
arbitrary region of text. However, there is little that you can do
with the text. What is needed is a way to assign a region to a
variable and manipulate it in some manner. The PEEL functions that
allow these kinds of interactions all use cursors, which are the
subject of this section.

7-7 Second Edition



EMACS EXTENSION WRITING GUIDE

A cursor is an entity that indicates a place in a buffer.
Specifically, it contains the following information:

1. The name of the buffer
2. The line number
3. The horizontal position (the column) in a line

Like a mark, a cursor has the property that it is bound to a place in a
file. If something occurs that would change this position, the value
of the cursor changes. This means that the cursor always points to the
same place. Suppose we have the following command:

(defcom foo
(with_cursor start
(prev_line 5)
(open_line)
(insert "Foobar")
(go_to_cursor start)))

This function creates a cursor called start, moves up five lines, opens
up the 1line, and inserts the string "Foobar" into the text. Finally,
the function returns point to the place indicated by start. However,
the value of start has changed because of the insertion. A slight
modification to this command makes it print out the value of the
cursor. The function now reads:

(defcom foo
(with_cursor start

(print start start)
(prev_line 5)
(open_line)
(insert "Foobar")
(go_to_cursor start)
(print start start)))

The difference between the two functions is the print statements. (The
second option to the print statement tells EMACS at what cursor
position it should print the text. In this way, EMACS is inserting
text into the buffer.) When executed, this function might print the
following:

[CURSOR c07 340,1]
[CURSOR c07 342,1]

Second Edition 7-8

J



h)

MANTPULATING TEXT IN BUFFERS

Note

When EMACS prints something in square brackets, the quantity
within the brackets has more than one attribute to be
described. 1In this case, EMACS is telling you that it is
printing information about a cursor, and the three properties
of the cursor are c07, which is the buffer name, 340, which is
the line number, and 1, which is the column number.

As indicated above, the value changes so that the text pointed to by
the cursor remains the same, although its location changes.

The basic difference between a cursor and a mark is that a mark becomes
a permanent placemarker into the file, as long as it is not pushed off
the ring of marks. As point moves, all the marks in the ring must be
updated. Although this is also true of cursors, they do not go into
the ring and are not permanent. This means that when you are done with
them, they leave and EMACS does not incur any additional overhead.

Like all EMACS entities, a cursor can be assigned to a variable. The
following two statements are used:

Statement Action
current_cursor Returns the value of point.
Ccopy_cursor Returns a copy of a cursor.

Notice the difference between the following two statements:

(setq foo current_cursor)
(setq bar (copy_cursor current_cursor))

The first statement equates the variable foo with the current cursor.
This means that as point moves, the value of foo will change. (Notice
that current_cursor is not within parentheses.) The second statement
equates bar with the value of current_cursor. However, bar equals the
value of current_cursor when the assignment is made. As point moves,
the value of current_cursor changes; however, the value of bar will
not change.

After point has changed, you can return to the cursor position with the
following command:

(go_to_cursor named-cursor)

7-9 Second Edition



EMACS EXTENSION WRITING GUIDE

For example:

(go_to_cursor bar)

The operation of saving the present position and then returning at a
later time is so common that PEEL contains a special form that combines
saving and restoring position into one operation. That is, the
following statement appears over and over again in extensions:

(setq start_position (copy_cursor current_cursor))

(go_to_cursor start_position)

To save you a little effort, the EMACS save_excursion special form does
both of these operations. It is used as follows:

(save_excursion
(do_something_that_moves_cursor))

This form indicates that when the save_excursion form completes, EMACS
should go back to the position point was at when the form began. The
one peculiarity is that when the form ends, the cursor is sometimes
left in the middle of the screen. Chapter 8 shows how to add another
step, using the window_info command, to ensure that the position of
point does not change.

Now that different ways of assigning cursors have been discussed, the
next step is to look at how to work with text contained in a buffer.
Basically, there are only three operations that can be done:

e Copying text in the buffer

e Inserting text into the buffer

® Deleting text in the buffer

You have already seen these operations in a different context. You are
now ready to use cursors to perform these operations.

Second Edition 7-10

J



A

MANTPULATING TEXT IN BUFFERS

Copying Text

It often occurs that an extension needs to extract information from
text contained in a buffer, and then modify it in some way. The
statement that extracts text from a buffer is point_cursor_to_string.
Its syntax is:

(point_cursor_to_string cursor)

As was discussed earlier, cursors can be associated with variables in
two ways: using the copy_cursor statement or using the with_cursor
statement. It does not matter which of the two you use, as the
following examples illustrate:

Example 1:
(with_cursor start
(if (forward_search "foo")
(setq text_string (point_cursor_to_string start))))
This form performs the following operations:

1. Establishes a cursor named start. This placemarker is the
position of point when the form begins execution.

2. Moves point to the first character after the string foo.

3. Copies into the variable called text_string all the text
from the position marked by start up to point.

The above function is identical to:
(setq start (copy_cursor current_cursor))

(if (forward_search "foo")
(setqg text_string (point_cursor_to_string start)))

The only difference between the two is that in the first example start
only has context within the form. In the second, start has meaning for
the remainder of the extension.

7-11 Second Edition



EMACS EXTENSION WRITING GUIDE

Example 2:

This example is taken from the view_kill_ring function.

(defun view_kill_ringf (&local (counter integer)
(kill_array array))
(setq kill_array (make_array 'string 11))
;all kill buf names in array
(setqg counter 1)
(select_buf ".buffers") ;this is where buffer names
;are stored
(save_excursion
(move_top)
(do_forever
(if (forward_search ".kill.") ;1ook for kill bufs
(begin_line)
(with_cursor start
(forward_search " ") ; put it into array
(aset (point_cursor_to_string
start) kill_array oounter)
(setq counter (1+ counter)))
else
(stop_doing))))

This segment of the view_kill_ring function goes to the EMACS internal
buffer (named .buffers) and then locates all buffers that have the
string .kill. in it. Then, using the with_cursor form, it extracts
the buffer name and puts it into the kill_array variable.

A second useful function is range_to_string. Its syntax is:

(range_to_string cursor_l cursor_2)

The only real difference between this statement and
point_cursor_to_string is that the region is bounded by two named
cursors rather than by a cursor and point.

Deleting Text Fram a Buffer

The statement used to delete text from a buffer is:

(delete_point_cursor cursor)

You use this function in the same manner as point_cursor_to_string.

Second Edition 7-12

J



MANTPULATING TEXT IN BUFFERS

Inserting Text Into the Buffer

The statement used for inserting text into the buffer is insert. For
example, in the view_kill_ring function, the user is shown the contents
of the kill buffers. A prompt line is printed that gives the user
(among other choices) the option of saving the contents of a
kill_buffer. The code for this is:

(if (= response "s")
(move_top)
(with_cursor start
(move_bottom)
(setq save_text (point_cursor_to_string start))))

The yank_kill_text function, compared to the view_kill_ring function,
is simplicity itself. Here it is in its entirety:

(defcom yank_kill_text
&doc "Inserts text saved by view_kill ring"
(insert save_text))

The insert commands simply tell EMACS to place the argument into the
buffer at point.

Another useful function is self_insert. 1Its function is to insert one
character into the buffer. It oomes in particularly handy when you
want to insert more than one identical character. For example:

(setq indentation (prompt_for_integer "What is the indentation" 0))
(self_insert " " indentation)

The first statement prompts for a number. The second uses this number
to tell EMACS how many spaces to insert. For example, if you had
answered 10, EMACS would insert 10 spaces.

Working With Text Contained in Variables

EMACS contains a variety of primitives that will assist you in working
with text copied into variables. Some of these are unique to EMACS;
others have great similarity to PL/I built-in functions.

7-13 Second Edition



EMACS EXTENSION WRITING GUIDE

Statement Action
catenate Joins two strings together.
substr Is the PL/I substr function. That is,

this function either returns or sets
parts of a string to the indicated
value.

index Is the PI/I index function. That is,
this function finds where an indicated
string begins in a second string.

translate Is the PL/I translate function. ‘That
is, this transforms the indicated
characters to the character shown.

remove_charset Removes specified characters from
string.

downcase Transforms a string into all lowercase.

upcase Transforms a string into all uppercase.

Here are some examples using these functions.

Example 1: catenate

(setq temp (/ (* (line_number current_cursor) 100) num_lines))
(setq message (catenate "— "

(integer_to_string temp)

" % -—— " message))

The first statement performs a computation that creates an integer
number that is where point is in the file expressed as a percentage of
the total length of the file., The second catenates three items
together and assigns the result to the variable called message. Notice
in particular that the integer_to_string function was used to convert
an integer value to a string. If this conversion were not made, EMACS
would have given you an error message.

Example 2: substr

(setq answer (substr (prompt "Do you wish to continue") 1 1))
This form prompts the user and returns the answer. The substr function
then extracts the first character of the returned reply. Finally, this

character is assigned to answer. Here is a slightly more complicated
version of the same function.

Second Edition 7-14

J

J



MANTPULATING TEXT IN BUFFERS

(setq yes_no (substr (prompt "Continue") 1 1))
(if (| (= yes_no "y") (= yes_no "Y"))
(do_something))

In this example, the first character of the reply is saved. This
character is then ocompared against both "y" and "Y". The two results
are logically OR'd together to see what should be done.

The way the above action is handled in many of the libraries is as
follows:

(defun yesno ((query string)
&returns Boolean
&local (reply string))
(setq reply (downcase (prompt query)))
(do_forever
(select reply
"yesn "y" "okll lltruell
(return true)
"noﬂ "nll Ilfalse"
(return false))
(setq reply
(downcase (prompt (catenate query " (Yes or No)"))))))

This allows greater flexibility in handling user responses.

Example 3: index

(setq pos (index name ".EM"))
(if (> pos 0)
(setq name (substr name 1 (- pos 1))))

In this example, the variable called name has been assigned same value.
The index function then looks for the string ".EM" in the variable. If
it is contained in name, pos is set to the position where the .EM would
be. Otherwise, pos is set to 0. The next statement performs an action
based on the value of pos. 1In this case, the substr function returns
the text from the beginning of the variable to the character right
before .EM.

7-15 Second Edition



EMACS EXTENSION WRITING GUIDE

Example 4: downcase

(defun lowercasef (&local (word string))
(with_cursor here
(forward_word)
(setq word (downcase (point_cursor_to_string here)))
(delete_point_cursor here))
(insert word))

This function transforms the word following point to lowercase. It
begins by setting a temporary cursor called here. It then moves point
forward a word. The text between point and here is returned by
point_cursor_to_string and then transformed by downcase. The text

between point and here is then deleted and the converted text is
inserted.

Second Edition 7-16

J

J



Modes

One problem that occurs when writing commands and systems of commands
is that they become permanent parts of the EMACS enviromment. In many
instances, what is wanted is a temporary way to redefine the meaning of
EMACS commands and then restore EMACS back to the way it was before
these commands were used. This ability in EMACS is called a mode.

EMACS, as it is shipped, contains a variety of modes. Let us look at
one so that you can gain an appreciation of what a mode can do and is
capable of doing. The explore mode consists of a variety of functions,
each of which performs an action that this mode's designer thought
essential. Here is a modification of the wallpaper command output that
shows what the mode definitions are:

“X-U explore_pop EXPLORE: Pop from explore sublevel.

“X-u explore_pop EXPLORE: Pop from explore sublevel.

A explore_attributes EXPLORE: Show attributes.

?,H explore_help EXPLORE: Describe explore.

C,N explore_create EXPLORE: Copy a file.

D,G explore_dive EXPLORE: Dive from an explore directory.
K explore_delete EXPLORE: Delete a file.

R explore_rename EXPLORE: Change a file's name.

S explore_spool EXPIORE: Spool a file.

U explore_pop EXPLORE: Pop from explore sublevel.

This listing indicates that certain keys have been reassigned. For
example, the letter K now calls a command called explore_delete. This
means that while EMACS is in EXPLORE mode, you cannot use the letter K

8-1 Second Edition



EMACS EXTENSION WRITING GUIDE

to insert a capital letter K. In a similar manner, the other elements
have been redefined. The advantage of this is that the mode designer
has created an interface that is uniquely tailored to the actions being
performed.

The following example illustrates transforming the begin_line function
so that it is useful in COBOL. In COBAL, you would want to write a
command that keeps the user out of columns one through six.

(defcom ocobol_begin_line
(if (~ (go_to_hpos 7))
(end_line)
(whitespace_to_hpos 7)))

As may be obvious, the manner in which you write commands for a mode is
identical to the way you would write oommands in fundamental EMACS.
This simple routine first tries to go to oolumn 7. If it is
unsuccessful, the routine adds spaces so that point is at column 7.

The problem is how to bind this to a key on a temporary basis. This is
the subject of this chapter.

MODES DEFINED

The actions that occur when you type a keystroke that invokes a binding
are not simple. EMACS does not simply take the keybinding and invoke
the command. Instead, EMACS goes through a series of table invocations
and lookups until it finds these commands. The keystrokes that you
type tell EMACS what tables to use. (These tables are called dispatch
tables.) When EMACS is first invoked, the following dispatch tables
exist:

main The main character dispatch mode

X The dispatch table for the {CTRL-X} prefix in the
main dispatch table

esc The dispatch table for ESCAPE in the main dispatch
table

mb_mode The dispatch table for minibuffers
reader The dispatch table used by the keyboard reader

This is used, for example, to define {CIRL-_} as
help_on_tap. If the function returns a string or
character value, the result is returned in place of
the character actually read. Otherwise, the reader
will read another character from the keyboard.

Second Edition 8-2

p



MODES

When you define a mode, you are actually creating a new dispatch table.
When the mode is invoked, it overlays the mode dispatch table on top of
the existing tables. When you type a keystroke command, EMACS first
searches the mode dispatch table. If it finds the keystroke there, it
executes the mode definition of the command. If the function is not
found there, it falls through to the "lower" table and checks to see if
the command exists there. This means that the definitions in the
latest dispatch tables take precedence over commands in previous
dispatch tables. Chapter 9 tells more about getting information from
dispatch tables.

There is nothing to prevent you from using more than one mode at a
time. That is, you could be in a state where LISP, overlay, and fill
modes are all operating at one time. However, when more than one mode
is in force, the order in which they are declared is significant. For
example, in overlay mode, the space character wipes out the character
following point and then inserts a space. The definition of the space
character in fill mode is different. This means that if overlay mode
was the most recent mode, the fill will not work. However, if fill was
the most recent mode, the space character would not overlay the
character in front of point.

Prime does not recommend that you use the EMACS commands that directly
invoke modes. Instead, you should use the functions turn_mode on and
turn_mode_off. Here is how they are used:

(defcom lisp on
&doc "Set lisp mode"
(turn_mode_on (find mode 'lisp) first))

(defcom lisp off
&doc "Turns off lisp mode"
(turn_mode_off (find mode 'lisp)))

Here are the functions:

(defun turn_mode_on ((mode dispatch)

&optional &quote (side atom)
&local (modes list))

(turn_mode_off mode)

(setq modes (buffer_info modes))

(if (eq side 'first)

(buffer_info modes (cons mode modes))
else

(buffer_info modes (append modes (list mode)))))

8-3 Second Edition



EMACS EXTENSION WRITING GUIDE

(defun turn_mode_off ((mode dispatch)
&local (modes list))
(do_forever
(setq modes (buffer_info modes))
(if (not (member mode modes)) (return))
(buffer_info modes (remove mode modes))))

The first part of this example shows the code for turning a mode on.
The function of the find mode statement is to return a dispatch table
that is usable for the mode. The function of the turn mode off
statement'within turn_mode_on is to insure that the mode only exists
once in a buffer. The buffer_info statements insert the dispatch table
into the buffer mode list. Finally, you can also state the order in
which the modes are inserted. If you specify first, as the example
illustrates, the mode just inserted becomes the first one in the search
path through the dispatch tables. Otherwise, the mode just entered
becomes the last one in the search list.

In a similar manner, the turn mode off function removes a dispatch
table from a buffer's mode list.

BINDING MODE FUNCTIONS AND COMMANDS

The way you create a keybinding for a mode is nearly identical to the
way you do it for other bindings. The only difference is that you also
have to specify the mode in which the binding will take effect. The
statement that you use is set_mode_key. Here are two examples:

(set_mode_key "lisp" ")" "close_paren")

(set_mode_key "lisp" ""["F" "balfor")
As you can see, this statement takes three arquments. The first is the
name of the mode, the second is the keybinding, and the third is the
name of the function or command.

After these definitions are created, EMACS will place them into a
dispatch table, ready for use when a mode is invoked.

A different way of setting mode keys is illustrated in the overlay
library, and is described in the dispatch_info discussion in Chapter 9.

Second Edition 8-4

J

J



)

Information
Commands

EMACS performs and keeps track of a great number of things at the same
time. For example, it retains information about every file, buffer,
and window that it is using. You may find out the state of any of
these things at any time by using the built-in functions described in
this chapter. While this may be useful, what is important is that
EMACS knows what kinds of properties an entity can have. Using these
same functions, you can set these values to something you want. For
example, you may want to present a buffer that is read-only so that a
user cannot modify it.

A second category of information commands are those that give
information about names and states, such as date or file_name.

BUFFER_INFO
The buffer_info command either gets or sets information about a buffer.
It takes the form:

(buffer_info any optional-any)

9-1 Second Edition



EMACS EXTENSION WRITING GUIDE

The arguments to this command have the following meaning:

any

optional-any

The buffer_info command is used to set and/or access buffer values.
When the value is changed, it returns the previous value.
argument is the name of the value to be accessed.
is optional. If it is used, this second argument is the value to

assign. Note that some values, such as the buffer name, cannot be

modified.

Either an atom, string, or user atom or user
string that indicates the variable or property to
be examined or set.

The new value for the property or variable.
These properties are defined below.

The following values (properties) may be accessed:

Value
name

default_file

modified

modes

read_only

Second Edition

Meaning
The name of the buffer. This is read-only.

The pathname of the default file associated
with the buffer.

If this is true, the buffer is oonsidered
modified. It is indicated by an asterisk on
the status line. The unmodify command sets
this to false. Specifically, typing the
unmodify command is the same as typing:

(buffer_info modified false)

Lists the modes associated with this buffer.
Note that the order of the modes in the list
is significant! Although you can use this
attribute to set the modes, Prime strongly
recommends that you use the turn_mode_on and
turn_mode_off functions.

Prevents accidental modification of a buffer.
For example:

(buffer_info read_only true)

This tells EMACS not to let a user enter any
commands that will modify the buffer.

9-2

The first
The second argument



Yy D

changed_ok

dont_show

two_dimensional

fill_column

mark
top_cursor
bottom_cursor

user

INFORMATION COMMANDS

If this is true, the user is allowed to quit
the editor even if this buffer has been
changed. That is, modification status does
not affect {CTRL-X}{CTRL-C}.

If this is true, the buffer is suppressed in
the {CTRL-X}{CTRL-B} listing. This command is
most useful when creating temporary buffers
that you do not want a user to know about.
For example, the describe ocommand uses two
temporary buffers called .DESCRIBE and
.DESCRIBE.EMACS. Neither of these will ever
appear in the buffer listing.

Controls whether next_line and prev_line move
strictly vertically, and whether forward_char
moves to the next line when reaching the end
of the current line. This is normally set and
unset with the 2don and 2doff commands.

Can be set for word-wrapping and related
packages. It is used by the fill-mode
software. It is not used by the wrapping
sof tware.

The current mark position in the buffer.
The beginning of buffer pointer.
The end of buffer pointer.

Used for extended values, as in:

(buffer_info (user comment_column) 40)

This statement associates a variable called
comment_oolumn with the buffer and assigns to
it a value of 40. This value could be used as
follows:

(if (< (cur_hpos)
(buffer_info (user comment_column)))
(whitespace_to_hpos
(buffer_info (user comment_column))))

This form tells EMACS to check the current
position and oompare it to the user-defined
comment_column. If the current position is
less than the oomment_column, EMACS adds
spaces until the line is the proper length.

9-3 Seoond Edition



EMACS EXTENSION WRITING GUIDE

DISPATCH_INFO

The dispatch_info statement returns information on a mode or dispatch
table. It returns the old value of the property. It takes the form:

(dispatch_info dispatch_table any-1 any-2)

Here any-l is the key indicating what property to get/set. The
optional any-2 arqument is the new value.

The dispatch_info function can be used to set an item in the dispatch
table so that a function is bound to a key. A mode value is a dispatch
table that is found using the find_mode function. The argument to
find_mode is either an atom or a string. The returned value is the
mode value. The following modes are predefined:

Mode Definition

main The main character dispatch mode.

X The dispatch table for the {CTRL-X} prefix in
the main dispatch table.

esc The dispatch table for ESCAPE in the main
dispatch table.

mb_mode The dispatch table for minibuffers.

reader The dispatch table used by the keyboard reader.

It is used, for example, to define {CTRL-_} as
help on_tap. If the function returns a string
or character value, the result is returned in
place of the Ccharacter actually read.
Otherwise, the reader will read another
character from the keyboard.

The dispatch_info function can be used to interrogate and modify
dispatch tables. The first argument is a dispatch table (that is, a
mode). The second argument is either the atom "name" (in which case
the name is returned), or it is a character, string, or integer value
identifying the entry to be interrogated and/or modified.

If there is a third argument, it is the new object to be placed into
the dispatch table. 1In all cases, the old value is returned.

Second Edition 9-4

J

J

J



3

)

D)

INFORMATION COMMANDS

FILE_INFO

The file_info command returns information about a file. It returns the
old value of the property. It takes the form:

(file_info string property any)

Here, string is the pathname of the file, property is an atom explained
below, and tile any argument (which is optionalé is the new value of the

property.
The values for property are:

Value Meaning
path_name Returns the absolute pathname of the file. For
example:

(file_info (file_name cur_cursor) path_name)

This returns the current pathname.

entry_name Returns the entry name of the file.

directory_name Returns the name of the directory that contains
the file.

type Returns the type of the file as "none", "file",
"directory", "segdir", or "unknown".

dumped Returns true if and only if the file has been
dumped.

exists Returns true if and only if the file exists.

This is one of the most useful functions. For
example, here is the mod_write_file extension:

(defcom mod_write _file
&doc "Write specified file"
&args ((place &prompt "Write file" &string))
(if (= place "")
(setq place (file_name cur_cursor)))
(if (file_info place exists)
(if (© (yesno
"Do you want to overwrite the file"))
(return)))
(write_file place))

9-5 Second Edition



EMACS EXTENSION WRITING GUIDE

WINDOW_INFO

After the prompt for the filename, EMACS checks

see if the file is in the directory

specified. If it is, EMACS asks permission to
overwrite.

The window_info command gets or sets information about a window.
also returns the old value of the property. It takes the form:

(window_info property any)

Here property is an atom, and the optional any argument is the

value for the property.

The values for property are:

Value

top_line

bottom_line

left_column

right_column

is_active

is_major

top_line_cursor

showing_numbers

Second Edition

Meaning

The line number in the buffer at which the
current window is displayed.

The last line on which the window is
displayed.

The leftmost column in which the window
appears.

The rightmost column in which the window
appears.

Indicates if the window is being
redisplayed.

Indicates if the window is a major window.
This will usually be true.

This cursor points into the top line of the
text that appears as the top 1line in the
window. This is one of the most useful
window_info functions, as will be shown
below.

Returns a true or false value that tells if
line numbers are indicated on the screen.
This is used by the #on and #off commands.

It

new

J



D)

N

INFORMATION COMMANDS

column_offset The value of the horizontal ocolumn offset.
This is used, directly or indirectly, by
all coomands that scroll the screen
horizontally.

last_buffer_cursor The cursor that {CTRL-X} B will go to.

Example:

This example illustrates the append_to_file command:

(defcom append_to_file
&doc "Appends current region to a file"
&na (&pass ocount &default 1)
(appendf count))
(defun appendf ( (count integer)
&local (top cursor)
(place string))
(setq top (window_info top_line_cursor))
(setq place (prompt "What file do you want to append to"))
(save_excursion

(if (= count 1) ; no arg or 1 is kill before
(kill_region)

else
(copy_region)) ; else copy

(with_no_redisplay
(if (file_info place exists) ;check if file exists
(find_file place)
else ; if it doesn't, create it
(go_to_cursor (find_buffer place))
(write_file place))
(move_bottaom)
(yank_region)
(save_file)))
(window_info top_line_cursor top)
(info_message "Region appended"))

This somewhat lengthy command is really pretty simple. The defcom, as
others shown before, accepts an argument and transmits it to a
function. The argument's sole purpose is telling the function what to
do. If the argument is 1, the region to be appended is removed from
the buffer; otherwise the region is just copied.

The top variable saves the position of the current top line, so that
when EMACS returns to the buffer (using save_excursion), the window
will not be shifted. If this oommand were not there, the line
containing the current cursor would be centered in the window.

9-7 Seocond Edition



EMACS EXTENSION WRITING GUIDE

OTHER INFORMATION COMMANDS

The EMACS commands that return various kinds of information are:

buffer_name

cpu_time

cur_hpos

cur_cursor
current_handler
current_line
current_major_window
date

dt

file_name
line_number
list_dir
major_window_count
terminal _type

uid

user_name

These are explained in Appendix A.

Second Edition

9-8

J

J



D

APPENDIXES



3

)

)

EMACS Functions

and Commands

This appendix contains a 1listing of all standard EMACS functions,
commands, keywords, global variables, and data types.

For

Note

The entries in this appendix are arranged alphabetically,
except that all names starting with non—alphabetic characters
(#, *, >, |, and so forth), as well as those few names starting
with capital letters, are placed at the beginning of the list.

each command or function, the following information is given:

e A brief summary of what the command or function does.

e A command format, if it is a command. Often, two or more
command formats are given, especially when there is a standard

binding for the command.
e The function format, if it is a function.

® A description of the data types of the arguments.

e The action that EMACS performs when the command or function is

executed.

e If relevant, an additional note or example.

A-1 Second Edition



EMACS EXTENSION WRITING GUIDE

e If relevant, the name of the EMACS library in which the source
for the command or function may be found.

Although standard LISP functions are described in this appendix when
they are available in PEEL, you may wish to refer to a LISP manual for
further examples and details.

If the action description of a function states that the value NIL is
returned, that is the same as the null list, ().

In the command formats, if [{ESCln] is shown, the command does not
ignore a numeric argument. The numeric argument may be specified
either as [{ESCIn] or with any other method for specifying numeric
arguments, such as a multiplier.

If [{ESC}n] is not shown in the command format, the command ignores a
numeric argument.

# Command and Function

The # command or function tells whether line-numbering mode is on.

Command Format: {ESC} X #

Function Format: (#)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS displays either "line numbers are off" or "line
numbers are on" in the minibuffer.

The # command returns the value NIL.

#off Command
The #off command turns off line-numbering mode.
Format: (#off)
Argument: A numeric argument, if specified, is ignored.

Action: EMACS turns off automatic line-numbering mode, and does
not show line numbers at the left of the window.

The #off function returns the value NIL.

#on Command
The #on extended command turns on line-numbering mode.

Format: (don)

Second Edition A-2

J J

J



A

)

EMACS FUNCTIONS AND COMMANDS

Argument: A numeric argument, if specified, is ignored.

Action: EMACS turns on automatic line-numbering mode, so that line
numbers are displayed to the left of the window.

The #on function returns the value NIL.

& Function

The & function is an abbreviation for the "and" function.

&args Keyword

The &args keyword is an abbreviation of the &arguments keyword.

&arguments Keyword
The &arguments keyword starts the argument definition section of a
defcom. (See defcom for the complete syntax.)

&char_arg Keyword

The &char_arg keyword is an abbreviation for the
&character_argument keyword.

&character_argument Keyword
The &character_argument keyword is used with the defcom function to
allow the passing of the keystroke that invoked the command. (See
the description of defcom for the syntax.) This keyword is not
particularly useful, because the character_argument function can
obtain and return this information regardless of whether
&character_argument has been specified.

&doc Keyword

The &doc keyword is an abbreviation of the &documentation keyword.

&documentation Keyword
The &documentation keyword is used in the defcom command to allow

you to specify a string description of the command. It is used in
help facilities, such as apropros and explain_key. (See defcom.)

A-3 Second Edition



EMACS EXTENSION WRITING GUIDE

&eval Keyword
The &eval keyword reverses the effect of the &quote keyword in a

defun function definition, and specifies that all the following
arguments are to be evaluated. (See defun.)

&ignore Keyword

The &ignore keyword is used in a defcom to specify that numeric
arguments to the command being defined are to be ignored.

&integer Keyword
The &integer keyword is used in a defcom with &args to specify that
an argument has the integer data type. (See defcom for the
complete syntax.)

&local Keyword
The &local keyword is used in a defun definition to specify that
there are no further arguments in the function header, and that the
remaining entries are local variables used only within the function
being defined.

&macro Keyword
The &macro keyword is used in a defun definition to specify that
the function returns a list that should be evaluated in the calling
context. (See defun for details.)

&na Keyword

The &na keyword is an abbreviation of &numeric_argument.

&numeric_arg Keyword
The &numeric_arg keyword is used in a defcom to specify how a
numeric argument to the command is to be handled.

&optional Keyword
The &optional keyword is used in a defun function header to spgcify
that all the following arguments are not required. Optional

arguments not specified when the function is invoked are
initialized to NIL.

Second Edition A-4

J



)

)

EMACS FUNCTIONS AND COMMANDS

&pass Keyword
The &pass keyword is used in a defcom to specify the name of a
local variable to which the value of the numeric argument is to be
assigned.

&prefix Keyword
The &prefix keyword is used in a defcom to indicate that the last

invocation character 1is to be inserted into the buffer as a side
effect of the command.

&prompt Keyword
The &prompt keyword is used in a defcom to cause a local variable
(defined with &args) to be prompted for, if it is not specified in
the command's invocation.

&quote Keyword
The &quote keyword is used in the argument 1list of a defun to
specify that EMACS should simply bind all the following arguments,

without attempting to evaluate them, when the function is invoked.
The &eval keyword reverses the effect of a previous &quote keyword.

&repeat Keyword
The &repeat keyword is used with &numeric_arg in a defcom to
specify that the numeric argument to the ocommand indicates the
number of times that the body of the defcom oode should be
executed. (See defcom.)

Format: &na (&repeat)

&rest Keyword

The &rest keyword is used in the arqument list of a defun to tell
EMACS to take the rest of the arguments and put them into a list.

Format: &rest (v list)

Argument: The argument v is any PEEL variable name. As shown in
the format, it must be given the list data type.

Example: &rest (r list)

When the function is invoked, all the following arguments will be
placed into a list assigned to the local variable r.

A-5 Second Edition



EMACS EXTENSION WRITING GUIDE

&returns Keyword

The &returns keyword is used in a defun to specify the data type
returned by the function being defined. This is the data type of
the effect of the function, not any side-effect. The value
returned by the function is specified by the return function.
&string Keyword
The &string keyword is used in a defcom with &args to specify that
an argument has the string data type.
&symbol Keyword
The &symbol keyword is used with &args in a defcom to specify that
the data type of the argument is a symbol.
* Function
The * arithmetic function returns the product of its arguments.

Format: (* x1 [x2 ... x8])
Arguments: * takes one through eight integer arguments.
Action: The * function returns an integer value representing the

product of its arguments. If there is only one argument, the value
of that argument is returned.

Example: The function

(* 3)
returns the integer value 3, while

(* 3 405)
returns the integer value 60, obtained by multiplying together 3,
4, and 5.

*_list Function

*_list is a LISP function that constructs a list of its arguments,
much like the list function. The last argument becomes the cdr of
the last cons used in constructing the list. It is an extended
version of cons, and is thus useful for adding elements to the

front of a list.

Format: (*_list argl arg2 [arg3...arg8] )

Second Edition A-6

}



)

)

EMACS FUNCTIONS AND COMMAMNDS

Arguments: *_list takes two to eight arguments of any data type.
Examples: The following expression
(*_list 'a 'b 'c 'd)
is equivalent to
(cons 'a (cons 'b (cons 'c 'd)))
Both construct the following value:
(abc. 4
If d is a list (i j k), then the expression becomes:
(*_list 'a 'b 'c '( i 3 k))

This adds three elements to the front of the 1list (i j k),
constructing:

(abcijk)

*catch Function

The *catch function, derived from MACLISP, corresponds roughly to a
non-local-goto or an on-unit definition in other high-level
languages.

Format: (*catch t sl)

Arguments: The argument t is an atam (called a "tag"), usually
quoted.

The argument sl is a PEEL statement.

Action: The *catch function returns a value whose data type
depends upon execution of the argument.

If multiple PEEL statements are required at sl, use a progn at sl,

and place the multiple statements within it. The value returned by

a progn is the value of the last statement in the progn.

EMACS executes the argument sl, stopping if a function of the form
(*throw t v)

is executed.

If no such *throw function is executed, then *catch returns the
value of the function sl.

A-7 Second Edition



EMACS EXTENSION WRITING GUIDE

If a *throw function in the format just shown is executed, then
execution of sl is terminated immediately, and *catch returns the
value v.

Note: The *catch function is like the catch function except that
the argument order is different. The order of arguments in *catch
is much easier to use.

Examples: Consider the following:
(*catch 'hello

(if (> a 0) (*throw 'hello "error"))

a)

If the value of a is positive at the time the if statement is
executed, then execution of *catch will temminate, returning the
value "error". Otherwise, execution will continue, and unless
stopped for some other reason, will continue to the form a, and
*catch will return that value.

The following example shows multiple *catches and *throws, and the
use of progn.

(print (*catch 'foo
(progn (setq a (prompt "hello"))
(if (= a "a") (*throw 'foo 20))
(print (*catch 'bar
(progn (setqg b (prompt "goodbye"))

(if (= b "b") (*throw 'foo 30))
(if (= b "c") (*throw 'bar 100))
))))))

Note that you can nest catches and throws. For example, an outer
*catch might catch "quit" throws, and an inner one might catch
argument errors.

*throw Function

The *throw function is a standard LISP function that provides a
function similar to invocation of an on—unit in other languages.

Format: (*throw t v)

Arguments: The argument t must be an atam, usually quoted. The
argument v can have any data type.

Action: The function is 1legal only within the argument list of

*catch with the tag t. (See the description of *catch for further
details.)

Second Edition A-8

J



b

A

EMACS FUNCTIONS AND COMMANDS

Note: The *throw function is like the throw function except that
the argument order is different.

+ Function

The + arithmetic function adds together its arguments.
Format: (+ x1 [x2 ...x8])

Arguments: The + function takes at least one argument and no more
than eight arguments. All arguments must have the integer data
type.

Action: The + function returns an integer value. If there is only
one argument, the value of that argument is returned. If there is
more than one argument, then + adds together all the arguments and
returns their sum.
Example: The function

(+ 3)
returns the value 3, while the function

(+3 45)

returns the value 12, equal to the sum of 3, 4, and 5.

- Function

The - arithmetic function either subtracts two arguments or negates
a single argument.

Format: (- x [y])

Arguments: The argument x, and the argument y if specified, must
be integer values.

Action: The - function returns an integer value. If y is not
specified, - returns the value of -x. If y is specified, - returns
the value of (x-y).

Examples: The function (- 2) returns the value -2, while the
function (- 10 5) returns the value 5.

/ Function

The / arithmetic function performs integer division.
Format: (/ xvy)

A-9 Seoond Edition



EMACS EXTENSION WRITING GUIDE

Arguments: Both x and y must be integer values.

Action: The / function returns an integer value. The value
returned is (x/y), truncating if necessary.

Note: Truncation is always in the direction toward 0. Therefore,

for example, (/ 24 5) and (/ -24 -5) each return the value 4, while
(/ -24 5) and (/ 24 -5) each return the value -4.

1+ Function

The 1+ arithmetic function returns the value obtained by adding one
to its argument.

Format: (1+ x)
Argument: The argument x must be an integer.
Action: The 1+ function returns the integer value (x+1).

Note: The following two expressions are equivalent:

(1+ x)
(+ x 1)
1- Function

The 1- arithmetic function returns the value obtained by
subtracting one from its argument.

Format: (1- x)
Argument: The argument x must be an integer.

Action: The 1- function returns the integer value obtained by
computing (x-1).

Note: The following two expressions are equivalent:

(1- x)
(- x 1)

2d Command and Function

The 2d extended command or function tells whether two-dimensional
mode is on. (See 2don.)

Command Format: {ESC} X 2d

Second Edition A-10

J

J



b

EMACS FUNCTIONS AND OOMMANDS

Function Format: (2d)

Arqument: A numeric argument, if specified, is ignored.
Action: EMACS displays either "2d is off" or "2d is on" in the
minibuffer.

2doff Command and Function

The 2doff extended command or function turns off two-dimensional
mode (see 2don).

Command Format: {ESC} X 2doff

Function Format: (2doff)

Arqument: A numeric argument, if specified, is ignored.

Action: EMACS turns off two-dimensional mode.

2don Command and Function

The 2don extended command or function turns on two-dimensional
mode.

Command Format: {ESC} X 2don

Function Format: (2don)

Arguments: A numeric argument, if specified, is ignored.

Action: EMACS turns on two-dimensional mode. In this mode, you
may use the cursor commands to move your cursor anywhere on the
screen, even where there are no characters in the buffer. If you
insert a character on the screen at a point on a line where
characters to the left of the point have not previously existed,
then EMACS automatically inserts blanks on the 1line up to that
point.

<, <=, =, "=, >, >= Functions

These relational operators test the relationship between their
arguments.

Format:A (op argl arg2), where the op is one of the following: <
<=’ =r =y >, or >=o

Arguments: Each of the relational operators takes two arguments.
Bot%bzrguments must have the same data type, and the ocommon data
can any.

A-11 Second Edition



EMACS EXTENSION WRITING GUIDE

Action: Each of the relational operators returns a Boolean value,
depending upon the result of the comparison. The < function
returns true if the first argument is less than the second, and
false otherwise. Similarly, the other functions compare and test
as follows: <= 1is the less than or equal comparison; = is the
equal comparison; "= is the not equal comparison; > is the
greater than oomparison; and >= 1is the greater than or equal
comparison.

If the two arguments are integers, then an ordinary integer
comparison is performed.

If the arquments are strings, they are compared according to the
rules to the ASCII collating sequence, after padding the string to
the length of the longer one with blanks, if necessary.

If the arguments are Boolean, then true is considered to be less
than false.

If the arguments are cursor values, then they must be in the same
buffer, and one cursor value 1is considered to be smaller than
another cursor value if it precedes the second one in the buffer.

Ctol Function

The CtoI oconversion function converts a character to an integer
value.

Format: (CtoI c)

Argument: The argument c must have the character or string data
type.

Action: The Ctol function returns an integer value. The value is
greater than or equal to 0 and less than or equal to 255. The
value returned is equal to the position of the character argument ¢
in the ASCII collating sequence.

If the argument c is a string, then the value for first character
of ¢ is returned.

ItoC Function

The ItoC function converts an integer between 0 and 255 into a
character.

Format: (ItoC x)

Argument: The argument x must have the integer data type.

Second Edition A-12

J



M)

EMACS FUNCTIONS AND COMMANDS

Action: The ItoC function returns a character value. The
character returned is equal to the character in position X modulo
256 of the ASCII collating sequence.

ItoP Function

The ItoP conversion function converts an integer between 0 and 127
into a Prime character with the high-order bit on.

Format: (ItoP x)
Argument: The argument x must be an integer.

Action: The ItoP function returns a character value. Given an
argument x,

(ItoP x)
returns the same value as

(ItoC (+ (modulo x 128) 128)

NL Global Variable
NI is a global variable having the character data type. The value
of NL. is the new-line character. You may imbed the value of NL. in
strings.

PtoI Function

The PtoI conversion function converts a Prime character, having the
high bit on, into an integer between 0 and 127.

Format: (Ptol c¢)

Argument: The argument ¢ must be a character value, usually with
the high bit on.

Action: The PtoI function returns an integer value between 0 and
127. Given an argument c, the value of

(PtoI c)
is ¢ with the high bit off, given by
(modulo ¢ 128)

If the argument ¢ is a string, then the value for first character
of ¢ is returned.

A-13 Second Edition



EMACS EXTENSION WRITING GUIDE

® Function

The " function is an abbreviation for the not function.

"= Function

(See the = function listed under '<'.)

“p_prev_line_command Command

(See prev_line_command.)

"q_quote_command Command

(See quote_command. )

“s_forward_search_command Command

(See forward_search_command.)

| Function

The | function is an abbreviation for the or function. (See the or
function for further information.)

abort_command Command
The abort_command command and function aborts a command.

Function Format: (abort_command)

Command Format: {ESC} X abort_command or {CTRL-G}

Arqument: A numeric argument, if specified, is ignored.

Action: The abort_command command permits the current command to
be aborted. For example, you may use (abort_command) in a PEEL
program at any point to temminate execution at that point. EMACS
causes the termminal to beep and returns you to command level.

The (abort_command) function does not return any value.

abort_minibuffer Command

(See abort_command. )

Second Edition A-14

J

J



5

3

EMACS FUNCTIONS AND COMMANDS

abort_or_exit Command

(See abort_command.)

af Function

The af function inserts the results of an active PRIMOS command
function invocation into the buffer at the current cursor position.

Format: (af s)
Arqument: The argument s must have the string data type.
Action: The af function inserts the result of an active PRIMOS
function invocation into your text buffer at the current cursor
position. The function returns NIL as its value.
Example: The function

(af "[calc 4+5]||)

inserts the string "9" into your text buffer.

all_modes_off Command

and

The all_modes_off command turns all modes off for the current
buffer.

Format: {ESC} X all_modes_off

Arqument: A numeric argument, if specified, is ignored.

Action: EMACS turns all modes off in the current buffer. Note
that any side-effects of turning a mode on (such as 2don in overlay
mode) will not be cancelled.

Function

The and function is a Boolean operator that returns the logical
"and" of its arguments.

Format: (and bl b2 [b3 ... b8] )

Arguments: The and function takes at least two and no more than
eight arguments. All arguments must have the Boolean data type.

Action: The and function returns a Boolean value oomputed by
taking the logical "and" of all of its arguments. That is, the and
function returns the value true if the value of all its arguments
is true; otherwise it returns the value false.

A-15 Second Edition



EMACS EXTENSION WRITING GUIDE

J

Note that all arguments are evaluated, regardless of whether any
one is false, and the order of evaluation is unspecified.

any Data Type
A variable with the any data type can take on any value of any data
type supported by PEEL. Note that all undeclared global variables
have by default the any data type.

append Function

The append function is a standard LISP function that appends all
the items of one list to the end of another list.

Format: (append 1lstl 1st2)

Arquments: -‘Both lstl and 1lst2 must be lists.

Action: The append function returns a value with the list data
type. The value is computed by appending all the items in lst2 to
the end of the items in lstl.
Example: The function

(append '(a b c) '(d e f))
returns the list (ab cd e f).

Note: The append function does not change the value of either list
1stl or 1st2.

append_to_buf Command and Function

The append_to_buf command or function appends the current region to
a buffer.

Command Format: [{ESC}n] {ESC} X append_to_buf
or
[{ESCIn] {CTRL-X} A

Function Format: (append_to_buf [n [b]])

Argument: The argument n, if specified, must be an integer value.
The argument b, if specified, must be a string value.

Action: If the argument b is not specified, then EMACS prompts you

with "buffer name:". The string that you type is assigned to the
variable b.

Second Edition A-16

J



EMACS FUNCTIONS AND COMMANDS

The string variable b is interpreted as a buffer name. EMACS
appends the current region to that buffer. This means that the
text in the current region is inserted at the end of that buffer.

If n is not specified, then the text in the current region is
deleted, meaning that the append operation is in effect a move. If
n is specified, then the text is copied, and the marked region is
not deleted.
append_to_file Command

The append_to_file command appends the current region to a file.
Format: [{ESCln] {ESC} X append_to_file

or

[{ESC}n] {CTRL-X} {CTRL-Z} A
Argument: The argument n, if specified, must be an integer value.
Action: The append_to_file command prompts you for a file name,
and then appends the current region to that file. This means that
the text in the current region is inserted at the end of that file.
If the argument n is not specified, then EMACS deletes the text in

the current region. This means that the append operation is, in
effect, a move.

If the argument n is specified, then EMACS copies the text without
deleting the marked region.
apply Function

The apply function is a standard LISP function that applies a
function to a list of arguments.

Format: (apply f lst)

Arquments: The value of £ must be a function. The value of lst
must be a list.

Action: EMACS applies the function f to the list of arguments in
1st.

Example:

(setq add_elements (fsymeval '+))

(setqg scores '(1 2 5))

(apply add_elements scores)
The apply function returns the value 8, obtained by computing the
value of (+ 1 2 5). (See fsymeval.)

A-17 Seoond FEdition



EMACS EXTENSION WRITING GUIDE

apropos Command and Function

The apropos command or function provides an extended help facility
that retrieves a list of commands that match a string.

Command Format: {ESC} X apropos

Function Fomat: (apropos [s])

Arqument: A numeric argument, if specified, is ignored.
The argument s, if specified, must be a string value.

Action: If s 1is not specified, then EMACS prompts you, with the
prompt "Apropos:" in the minibuffer, for a string s.

EMACS goes through all its handlers (defcoms or built-in handlers)
that have been loaded and looks for a match between s and either
the name of the handler or its documentation string.

EMACS also looks for key bindings for any functions bound by the
previous search.

All this information is displayed on your screen.

The apropos function returns NIL.

Note: When you use defcom to define a new command, you may use the
&doc operation to specify a documentation string for the new

command. The apropos oommand or function displays that
documentation string for an appropriate argument string s.

aref Function

The aref function returns the value of an array element.
Format: (aref a x)

Argqument: The argument a must be an array, and is usually a
variable name to which an array has been bound by means of setqg and
make_array. The value of x must be a nonnegative integer less than
the number of elements in the array (arrays are indexed from 0).

Action: If the value of x is 0, then aref returns the first
element of the array a. 1In general, aref returns that element of
the array a with index x, that is, the (x+l)st element of the array
a.

Second Edition A-18

J

)

4 J



)

EMACS FUNCTIONS AND QOMMANDS

array Data Type
A value with the array data type is created by means of the
make_array function.

array_dimension Function

The array_dimension function returns the number of elements in an
array.

Format: (array_dimension a)

Argument: The argument a must be an array. Usually a is a
variable to which an array has been bound by means of setq and
make_array.

Action: The array_dimension function returns an integer value
equal to the number of elements in the array.

Example: The function
(array_dimension (make_array 'integer 20))

returns the value 20.

array_type Function
The array_type function returns the data type of an array.
Format: (array_type a)

A_rg:rg@%: The argument a must be an array. Usually a is a symbol
to which an array value has been bound by means of setq and
make_array.

Action: The array_type function returns an atam specifying the

data type of the array. The data type is the same as was specified
in the make_array function that created the array.

aset Function
The aset function stores a value into an array element.
Format: (aset v a n)
Argument: The argument a must be an array value. Usually a is a

variable to which an array value has been bound by means of the
setq and make_array functions.

A-19 Second Edition



EMACS EXTENSION WRITING GUIDE

The argument v must have a value whose data type is the same as the
data type of the array a, as specified in the make_array function
that created the array.

The argument n must have a non—negative integer value less than the
number of elements in the array.

Action: If the value of n is 0, then aset sets the first element
of the array a to the value v. In general, aset sets the value of
the (nt+l)st element of the array a to the value v.

The aset function returns the value v.

assoc Function
The assoc function looks up an item in a LISP association list.
Format: (assoc k lst)

Argument: The argument lst must be an association 1list, as
described below. The argument k may have any data type.

Action: An association list is really a list of lists. The car of
each sublist is called the "key", and the cdr of each sublist is
the value associated with the key. The assoc function returns the
sublist associated with the key k in the association list 1lst. If
key k is not found in the association list, assoc returns NIL.

Example: The following example illustrates various uses of the
assoc function:

(setqg joe '((name "Joe Smith") (age 27)
(phone "234-1234")))

(assoc 'phone joe) -> (phone "234-1234")
(assoc 'age joe) -> (age 27)
(assoc 'quux joe) => ()

assure_character Function

The assure_character function returns the next keyboard character
typed without removing it from the input buffer.

Format: (assure_character [raw])
Argqument: The argument raw, if specified, must be the atom raw.
Action: The assure_character function waits until there is a typed

character in the input buffer. It then returns the value of that
character, without removing that character from the input buffer.

Second Edition A-20



N )

EMACS FUNCTIONS AND COMMANDS

If the arqument raw is specified, then a "raw read" is performed,
and no special handling, such as "help on tap", is supported.

Example: The function
(assure_character raw)
does a raw read to input the next character from the terminal
without removing it from the input buffer.
at_white_char Function

The at_white_char function returns a Boolean value indicating
whether the cursor is at a whitespace character.

Format: (at_white_char)

Argquments: None.

Action: The at_white_char function returns a Boolean value. 'The
value is true if the character to the right of the cursor is in
the string bound to the atom whitespace; otherwise, it is false.

atom Function

The atom function is a standard LISP function that indicates
whether or not the argument is an atom.

Format: (atom v)

Argument: The argument v may have any data type.

Action: The atam function returns a Boolean value. The value is
true if the argument v is not a list structure, that is, neither a
cons nor NIL.

autoload_lib Function

The autoload_lib function fasloads a file and executes the given
command.

Format: (autoload_lib c s)

Arquments: The argument ¢ must be an atom representing the name of
a command. The argument s must be a string.

Action: The string specified by the argument s must be a PRIMOS
pathname for a package ocontaining a redefinition of the atom
specified by the argument c¢. EMACS opens for input the filename
obtained by adding the suffix .EFASL to the string s, and then
loads and executes that file as a fasload file, thereby executing

A-21 Second Edition



EMACS EXTENSION WRITING GUIDE

the command given by the atom c. If EMACS cannot find the .EFASL
file, it looks for the corresponding .EM file instead, and compiles
it with the pl command.

The autoload_lib function returns the value NIL.

Mote: This function is useful when you have an external command
for which you wish to defer the loading until it is actually used.

back_char Command and Function

The back_char ocommand or function moves the cursor back by a
specified number of characters.

Command Format: [{ESC}n] {ESC} X back_char
or
[{ESCIn] {CTRL-B}

Function Format: (back_char [n])

Argument: The argument n, if specified, must be an integer.
Action: If n is not specified, then let n equal 1.
If the value of n is 0, then no action takes place.

If the value of n is positive, then the cursor is moved back n
characters, stopping if the beginning of the buffer is reached.

If the value of n is negative, then the cursor is moved forward
(-n) characters, stopping if the end of the buffer is reached.

The back_char function returns the value NIL.

back_page Command and Function

The back_page command or function moves the window back a group of
lines, usually 18.

Command Format: [{ESC}n] {ESC} X back_page
or
[{EsC}n] {ESC} V

Function Format: (back_page [n])

Arqument: The argument n, if specified, must be an integer.
Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

Second Edition A-22

J



3

EMACS FUNCTIONS AND COMMANDS

If the value of n is positive, the window is moved back n pages,
stopping if the beginning of the buffer is reached. The cursor is
left at approximately the middle of the window.

If the value of n is negative, the window is moved forward (-n)
pages, stoppmg if the beginning of the buffer is reached. The
cursor is left at approximately the middle of the window.

The back_page function returns the value NIL.

back_tab Command and Function

The back_tab command or function moves the cursor back by a
specified number of tab stops.

Command Format: [{ESCIn] {ESC} X back_tab

Function Format: (back_tab [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.
If the value of n is 0, no action takes place.

If the wvalue of n is positive, the cursor is moved back n tab stop
positions, stopping if the beginning of the line is reached.

If the value of n is negative, the cursor is moved forward (-n) tab
stop positions. If the end of the line is reached, EMACS
automatically fills the end of the line with blank characters, up

to the desired tab stop position.

The back_tab function returns the value NIL.

back_to_nonwhite Command and Function

The back_to_nonwhite command or function puts the cursor onto the
first nonwhite character on a line. (A nonwhite character is any
character not bound to the atom whitespace.)

Command Format: [{ESC}n] {ESC} X back_to_nonwhite
or
[{ESC}n] {ESC} M

Function Fomat: (back_to_nonwhite [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

A-23 Second Edition



EMACS EXTENSION WRITING GUIDE

If n does not equal 0 or 1, do the following:
e If n is greater than 1, execute
(next_line (1- n))
e If n is less than 0, execute
(next_line n)
EMACS then moves the cursor back or forward to the first
nonwhite character on the current line. If there are no
nonwhite characters on the line, EMACS moves the cursor to the

end of the line.

The back_to_nonwhite function returns the value NIL.

back_word Command and Function

The back_word command or function moves the cursor back by a
specified number of words.

Command Format: [{ESC}n] {ESC} X back_word
or
[{ESCIn] {ESC} B

Function Fommat: (back_word [n])

Ar%gent: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.
If the value of n is 0, no action takes place.

If the value of n is position, EMACS moves the cursor back to the
nth occurrence of a character that begins a word, as specified by
the list of characters in the whitespace string. (That is, EMACS
moves the cursor back n words, and leaves it at the first character
on that word.) Cursor movement stops if the beginning of the
buffer is reached.

If the value of n is negative, then EMACS moves the cursor forward
to the nth occurrence of a character that immediately follows a
word. (That is, FMACS moves the cursor ahead n words, leaving the
cursor on the whitespace character immediately following the end of
the word.) Cursor movement stops if the end of the buffer is
reached.

The back_word command returns the value NIL.
Note: The token_chars atom contains the list of characters that

define a word or token.

Second Edition A-24

J

J



N )

EMACS FUNCTIONS AND COMMANDS

backward_clause Command and Function

The backward_clause ocommand or function moves the cursor back by a
specified number of clauses.

Command Format: [{ESCIn] {ESC} X backward_clause
or
[{ESC}n] {CrRL-X} {CTRL-Z} {CTRL-A}

Function Format: (backward_clause [n])

Arqument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If the value of n is positive, EMACS moves the cursor back to the
character preceding the nth occurrence of a character that delimits
a clause. (That is, EMACS moves the cursor back n clauses, and
leaves it at the character preceding the last clause delimiter.)
Cursor movement stops if the beginning of the buffer is reached.

If the value of n is negative, EMACS moves the cursor forward to
the nth occurrence of a character that delimits a clause. (That
is, FMACS moves the cursor ahead n clauses, leaving the cursor on
the character immediately following the last clause delimiter.)
Cursor movement stops if the end of the buffer is reached.

The backward_clause command returns the value NIL.

NMote: The characters delimiting a clause are contained in the
global string variable clause_scan_tableS$.

backward_clausef Function
The backward_clausef function moves the cursor back by a specified
number of clauses, and returns a Boolean value indicating whether
the operation was successful.

Format: (backward_clausef [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

The backward_clausef function returns a Boolean value.
Action: If n is not specified, let n equal 1.

If the value of n is 0, no cursor movement takes place, and
backward_clausef returns the value true.

A-25 Second Edition



EMACS EXTENSION WRITING GUIDE

If the value of n is positive, EMACS moves the cursor back to the
character preceding the nth occurrence of a character that delimits
a clause. (That is, EMACS moves the cursor back n clauses, and
leaves it at the character preceding the last clause delimiter.)
Cursor movement stops if the beginning of the buffer is reached.
If the beginning of the buffer is reached, backward_clausef returns
the value false; otherwise, backward_clausef returns the value
true.

If the value of n is negative, EMACS moves the cursor forward to
the nth occurrence of a character that delimits a clause. (That
is, EMACS moves the cursor ahead n clauses, leaving the cursor on
the character following the last clause delimiter.) Cursor
movement stops if the end of the buffer is reached. If the end of
the buffer is reached, backward_clausef returns the value false;
otherwise, backward_clausef returns the value true.

Note: The list of characters delimiting a clause may be found in
the global string variable clause_scan_tableS.
backward_kill_clause Command and Function

The backward_kill clause ocommand or function kills text from the
current cursor position to the beginning of the specified clause.

Command Format: [{ESC}n] {ESC} X backward_kill_clause
or
[{ESC}n] {CTRL-X} {CTRL-Z} {CTRL-H}

Function Format: (backward_kill_clause [n])

Argqument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If the value of n is 0, no action takes place.

If the value of n is not 0, EMACS performs the following
operations:

(mark)
(backward_clause n)
(forward_char 2)
(kill_region)

Notice that when n is positive, backward_kill_clause kills all

characters back to the character following the 1last clause
delimiter found by the backward_clause operation.

Second Edition A-26

J

J



D)

EMACS FUNCTIONS AND COMMANDS

Caution

If n is negative, backward_clausef deletes all characters
up to and including the last clause delimiter found, plus
two additional characters of the following clause.

The backward_kill_clause function returns the value NIL.

backward_kill_line Command and Function

The backward_kill_line command or function kills all text from the
current cursor position back to the beginning of the line.

Command Format: [{ESCln] {ESC} X backward_kill_line
or
[{ESC}n] {CTRL-X} {CTRL-K}

Function Format: (backward_kill_line [n])

Arqument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal O.

EMACS deletes all characters from the current cursor position back
to the beginning of the line. In addition, if the value of n is
not 0, EMACS deletes the newline character preceding the beginning
of the line.

The backward_kill_line function returns the value NIL.

backward_kill_sentence Command and Function

The backward kill_sentence command or function kills text from the
current cursor position to the beginning of the specified sentence.

Command Format: [{ESCIn] {ESC} X backward_kill_sentence
or
[{ESCIn] {CTRL-X} {CTRL-H}

Function Format: (backward_kill_sentence [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

A-27 Second Edition



EMACS EXTENSION WRITING GUIDE

If the value of n is not 0, EMACS performs the following actions:
(mark)

(back_sentence n)
(kill_region)

The backward_kill_sentence function returns the value NIL.

backward_para Command and Function

The backward_para command or function moves the cursor back by a
specified number of paragraphs.

Command Format: [{ESC}n] {ESC} X backward_para
or
[{ESCIn] {CTRL~X} [

Function Format: (backward_para [n])

Arqument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.
If the value of n is 0, no action takes place.

If the value of n is positive, EMACS moves the cursor back to the
character preceding the nth occurrence of a character that delimits
a paragraph. (That is, EMACS moves the cursor back n paragraphs,
and leaves it at the character preceding the last paragraph
delimiter.) Cursor movement stops if the beginning of the buffer
is reached.

If the value of n is negative, EMACS moves the cursor forward to
the (-n)th occurrence of a character that delimits a paragraph.
(That Is, EMACS moves the cursor ahead (-n) paragraphs, leaving the
cursor on the character immediately following the last paragraph
delimiter.) Cursor movement stops if the end of the buffer is
reached.

The backward_para command returns the value NIL.
Note: Paragraphs are defined as lines beginning with a period, a
blank line, or a space.

backward_sentence Command and Function

The backward_sentence command or function moves the cursor back by
a specified number of sentences.

Second Edition A-28

J

)



h)

EMACS FUNCTIONS AND COMMANDS

Command Format: [{ESCIn] {ESC} X backward_sentence
or
[{ESC}n] {ESC} A

Function Format: (backward_sentence [n])

Arqument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.
If the value of n is 0, no action takes place.

If the value of n is positive, EMACS moves the cursor back to the
character preceding the nth occurrence of a character that delimits
a sentence. (That is, EMACS moves the cursor back n sentences, and
leaves it at the character preceding the last sentence delimiter.)
Cursor movement stops if the beginning of the buffer is reached.

If the value of n is negative, EMACS moves the cursor forward to
the (-n)th occurrence of a character that delimits a sentence.
(That Is, EMACS moves the cursor ahead (-n) sentences, leaving the
cursor on the character immediately following the last sentence
delimiter.) Cursor movement stops if the end of the buffer is
reached.

The backward_sentence command returns the value NIL.

Note: The characters delimiting a sentence are in the global
string variable sentence_scan_tableS.

backward_sentencef Function

The backward_sentencef function moves the cursor back by a
specified number of sentences, and returns a Boolean value
indicating whether the operation was successful.

Format: (backward_sentencef [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

The backward_sentencef function returns a Boolean value.
Action: If n is not specified, let n equal 1.

If the value of n is 0, no cursor movement takes place, and
backward_sentencef returns the value true.

If the value of n is positive, EMACS moves the cursor back to the
character preceding the (-n)th occurrence of a character that
delimits a sentence. (That iIs, EMACS moves the cursor back (-n)
sentences, and leaves it at the character preceding the last

A-29 Second Edition



EMACS EXTENSION WRITING GUIDE

sentence delimited.) Cursor movement stops if the beginning of the
buffer is reached. If the beginning of the buffer is reached, then
backward_sentencef returns the value false; otherwise,
backward_sentencef returns the value true.

Note: The characters delimiting a sentence are in the global
string variable sentencef_scan_tableS.
balbak Command and Function

The balbak command or function moves the cursor to the opening
parenthesis of the current level.

Command Format: [{ESC}n] {ESC} X balbak
or
[{ESC}n] {ESC} {CTRL-B} (LISP mode only)

Function Format: (balbak [n])

Argument: The argument n, if specified, must be an integer value.
Action: If the argument n is not specified, let n equal 1.

If n is greater than or equal to 0, EMACS proceeds as follows:

e If point is at a closing parenthesis, EMACS moves point to
the corresponding opening parenthesis.

e If point is on text, EMACS moves point back to the last
closing parenthesis, and then back again to the
corresponding opening parenthesis. This means that if point
is between statements or forms, EMACS skips back over the
last form or statements.

If the value of n is negative, EMACS executes:

(balfor)

balfor Command and Function

The balfor command or function moves the cursor to the closing
parenthesis of the current level.

Command Format: [{ESC}n] {ESC} X balfor
or
[{ESC}n] {ESC} {CTRL-F} (LISP mode only)

Function Format: (balfor arg)

Argument: The argument n, if specified, must be an integer value.

Second Edition A-30

J

J

J



D)

EMACS FUNCTIONS AND COMMANDS

Action: If n is not specified, let n equal 1.

If the value of n is greater than or equal to 0, EMACS proceeds as
follows:

e If point is at an opening parenthesis, EMACS moves point to
the corresponding closing parenthesis.

e If point is on text, EMACS moves point forward to the next
opening parenthesis, and then forward again to the
corresponding closing parenthesis. This means that if point
is between statements or forms, EMACS skips point forward
over the next form or statement.

If the value of n is negative, EMACS executes:

(balbak)

begin_line Command and Function

The begin_line ocommand or function moves the cursor back to the
start of the line.

Command Format: {ESC} X begin_line
or
{CTRL-A}

Function Format: (begin_line [arg])

Argument: The optional argument, if specified, is ignored.
Action: EMACS moves the cursor to the beginning of the line.

The begin_line function returns the value NIL.

beginning_of buffer_p Function

The beginning_of_buffer_p function tests whether the current cursor
is at the beginning of the buffer.

Format: (beginning of_buffer_p)

Arqument: None.

Action: The beginning of_buffer_p function returns a Boolean
value. The value is true if and only if the current cursor is at
the beginning of the buffer.

A-31 Second Edition



EMACS EXTENSION WRITING GUIDE

beginning_of _line_p Function

The beginning_of _line_p function tests whether the current cursor
is at the beginning of the line.

Format: (beginning _of_line_p)
Arqument: None.
Action: The beginning of line_p function returns a Boolean value.
The value is true if and only if the current cursor is at the
beginning of the line.

bolp Function

The bolp function is an abbreviation of beginning of_line_p.

Boolean Data Type

A variable with the Boolean data type can have only the values true
and false.

buffer_info Function

The buffer_info function either gets or sets information about the
current buffer.

Format: (buffer_info p [v])

Argquments: The argument p must have as a value the atom or symbol
representing the property to be accessed or changed. A complete
list of the valid property names is given below, under action.

The argument v, if specified, must have a data type that is
compatible with the property p.

Action: EMACS sets or accesses a specified buffer value. When a
value is changed, the function returns the previous value. The
argument p is the name of the value to be accessed or changed. The
second argument, if specified, is the value to be assigned to the

property p.
The legal values for the property p are as follows:

Property Data Type Meaning
name string Name of buffer. This property may

not be modified.

Second Edition A-32

)



b

EMACS FUNCTIONS AND COMMANDS

default_file string The pathname of the default file
associated with the buffer.

modified Boolean True if the buffer has been
modified. This is indicated by a *
on the status line.

modes list The list of the modes associated
with this buffer.

read_only Boolean True if the buffer <cannot be
modified.

changed_ok Boolean If true, the user is allowed to

quit the editor with {CTRL-X}
{CTRL—C} even if this buffer has

been changed.

dont_show Boolean If true, the buffer name is
suppressed in the {CTRL-X} {CTRL-B}
listing.

two_dimensional Boolean If true, specifies 2don mode is on.

fill_column integer Fill column for word wrapping.

mark cursor The current marked position in the
buffer.

top_cursor cursor Pointer to the beginning of the
buffer.

bottom_cursor cursor Pointer to the end of the buffer.

user (See below.)

The "user" option is used for extended values as in:
(buffer_info (user frob) 17)

This indicates a user variable. It is actually the car of a oons
whose cdr is a user—defined per buffer value. The cdr may be the
same as the name of a request value, in which case it is identical
to using the name directly without "user".

The following example returns or sets the list of modes associated
with the current buffer. Note that in the example, mode is an
unquoted atom as in:

(buffer_info modes (list (find_mode "quux")))

A-33 Second Edition



EMACS EXTENSION WRITING GUIDE

So to add a new mode:

(buffer_info modes (append (buffer_info modes)
(find_mode newmode)) )

or toc remove a mode:

(buffer_info modes (remove (find_mode newmode)
(buffer_info modes)))

Note that the order of the modes in the list is significant!

buffer_name Function
The buffer_name function returns the name of the associated buffer.
Format: (buffer_name c)
Argument: The argument ¢ must have the data type of cursor.

Action: The buffer_name function returns a string value. The
string contains the name of the buffer in which the cursor ¢ lies.

capinitial Command and Function

The capinitial command or function changes the first character of a
word, if it is a letter, to uppercase.

Command Format: [{ESC}n] capinitial
or
[{ESC}n] {ESC} C

Function Format: (capinitial [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.
If the value of n is 0, no action takes place.

If the value of n is negative, EMACS sets n=-n, moves the cursor
back n words, and proceeds as in the following paragraph.

If the value of n is positive, EMACS starts with the current word
(or the next word, if the cursor is on whitespace) and converts the
first character of that word to uppercase, if it is a lowercase
letter.

The capinitial function returns the value NIL.

Second Edition A-34

J



N

EMACS FUNCTIONS AND COMMANDS

car Function
The car LISP function returns the first item in a list.
Format: (car 1st)
Argqument: The argument lst must be a list.
Action: If 1lst is a null list, car returns a null list.
If 1st is not a null list, car returns the first item of the list.
The data type of the value returned by car equals the data type of
the first item in the list.

case? Command and Function

The case? command and function displays a message telling whether
uppercase and lowercase letters are distinguished in searching.

Command Format: {ESC} X case?

Function Format: (case?)

Argument: A numeric argument, if specified, is ignored.

Action: If cases are being distinguished, the message "Cases are
Iooked at when searching" is displayed. Otherwise, the message
"Cases are ignored when searching" is displayed.

The case? function returns the value NIL.

case_off Command and Function

The case_off command causes uppercase and lowercase letters to be
treated identically during searches.

Command Format: {ESC} X case_off

Function Format: (case_off)

Arqument: A numeric argument, if specified, is ignored.

Action: In subsequent search operations, EMACS ignores the
distinction between corresponding uppercase and lowercase letters.

The case_off function returns the value NIL.
case_on Command and Function

-Tbe case_on command causes uppercase and lowercase letters to be
distinguished during searches.

A-35 Second Edition



EMACS EXTENSION WRITING GUIDE

Command Format: {ESC} X case_on

Function Format: (case_on)

Argument: A numeric arqument, if specified, is ignored.

Action: In subsequent search operations, EMACS observes the
distinction between uppercase and lowercase letters.

The case_on function returns the value NIL.

case_replace? Command and Function
The case_replace? command and function displays a message telling
whether uppercase and lowercase letters are distinguished in
replacing.

Command Format: {ESC} X case_replace?

Function Format: (case_replace?)

Arqument: A numeric argument, if specified, is ignored.

Action: If cases are being distinguished, the message "Cases are
looked at in replace" is displayed. Otherwise, the message "Cases
are ignored in replace" is displayed.

The case_replace? function returns the value NIL.

case_replace_off Command and Function

The case_replace_off command causes uppercase and lowercase letters
to be treated identically during replace operations.

Command Format: {ESC} X case_replace_off

Function Format: (case_replace_off)

Argument: A numeric argument, if specified, is ignored.

Action: In subsequent replace operations, EMACS ignores the
distinction between corresponding uppercase and lowercase letters.

The case_replace_off function returns the value NIL.

case_replace_on Command and Function

The case_replace_on oommand causes uppercase and lowercase letters
to be distinguished during replace operations.

Command Format: {ESC} X case_replace_on

Second Edition A-36



)

EMACS FUNCTIONS AND COMMANDS

Function Format: (case_replace_on)

Argument: A numeric argument, if specified, is ignored.

Action: In subsequent replace operations, EMACS observes the
distinction between uppercase and lowercase letters.

The case_replace_on function returns the value NIL.

catch Function

The catch function is the same as the *catch function, except that
the argument order is different.

Format: (catch body tag)

This is like *catch, except that the body and tag arguments are
evaluated. Because catch's argument order makes programming quite
difficult, the use of *catch is recommended instead. (See *catch
for further information.)

catenate Special Form

The catenate special form concatenates its string arguments.
Format: (catenate sl [s2 ... s8])

Arquments: The catenate special form takes at least one argument
and no more than eight arguments. All arguments must have the
string or character data type.

Action: The catenate function returns a string value.

If there is only one argument, sl, the value of sl is returned.

If there is more than one argument, catenate concatenates together
all the argument string values and returns the combined string.

Example: The function
(catenate "hi" "there")

returns the string value "hithere".

Function

The cdr LISP function returns the value of the list argument with
the first item removed.

Format: (cdr 1lst)

A-37 Second Edition



EMACS EXTENSION WRITING GUIDE

Argument: The argument lst must be a list.
Action: The cdr function returns a list value.

If 1st is a null 1list or a list containing only one value, cdr
returns a null list.

If 1lst is a list containing more than one item, odr returns a list
containing all items in 1lst except the first.
center_line Command and Function

The center_line command or function centers one or more lines of
text.

Command Format: [{ESC}n] {ESC} X center_line
or
[{ESC}n] {CTRL-X} {CTRL-Z} S

Function Format: (center_line [n])

Argument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.
If the value of n is 0, no action takes place.

If the value of n is positive, then n lines of text, beginning with
the current one and continuing forward, are centered.

If the value of n is negative, then -n lines of text, beginning
with the current one and proceeding backward, are centered.

To center a line of text, EMACS proceeds as follows:

e If the line is null (contains no characters), no action
takes place. Otherwise:

e EMACS removes all leading whitespace from the beginning of
the line. Then, let k equal the number of characters of
text remaining on the line.

o Let f equal the value returned by

(buffer_info fill_column)
If that value is 0 or undefined, let f equal 70.
e EMACS inserts (f-k)/2 spaces at the beginning of the line.

The center_line function returns the value NIL.

Second Edition A-38

)

J



EMACS FUNCTIONS AND COMMANDS

char_to_string Function

The char_to_string conversion function oonverts a character
argument into a string of length one.

Format: (char_to_string c)
Arqument: The argument ¢ must have the character data type.
Action: The char_to_string function returns a string value of
Iength one. The string is computed by converting the character ¢
to a string.

character Data Type
A variable with the character data type can have as a value any
character.

character_argqument Function

The character_argument function returns the character argument to
the current command.

Format: (character_argument)

Argggent: None.

Action: The character_argument function returns a value with a
character data type. The value is the character argument to the
current command; that is, the last character of the keypath used
to invoke the command.

charp Function

The charp function tests its argument to determine whether it has
the character data type.

Format: (charp arg)
Argument: The argument arg may be any data type.
Action: The charp function returns a Boolean value. The value is

true 1f the argument gg%.has the character data type; it is false
if the argument has a different data type.

clear_and_say Function

The clear_and_say function is the same as the init_local_displays
function.

A-39 Second Edition



EMACS EXTENSION WRITING GUIDE

close_paren Command and Function

The close_paren command or function moves the cursor briefly to the
opening parenthesis that corresponds to the closing parenthesis

just typed.

Command Format: {ESC} X close paren
or
) (LISP mode only)

Function Format: (close_paren)

Argument: A numeric argument, if specified, is ignored.
Action: EMACS takes the following action:
e Inserts a closing parenthesis at the current point.

e Moves the cursor to the opening parenthesis that corresponds
to the closing parenthesis just typed.

e After a pause, returns the «cursor to the position
immediately following the closing parenthesis just typed.

This command aids you in typing LISP or PEEL programs by helping
you match parentheses in LISP mode.

Note: The variable lisp.paren_time controls the duration of the
pause at the opening parenthesis. It is normally 750 milliseconds,
but can be changed to another value if desired. A value of 0 turns
off close_paren.

collect_macro Command

The collect_macro command starts collecting keystrokes typed at the
terminal, in order to define a macro.

Command Format: {ESC} X collect_macro
or
{CTRL-X} (

Argqument: A numeric argument, if specified, is ignored.
Action: EMACS begins to collect keystrokes typed at the terminal.

Note: Collection of keystrokes is terminated by the finish macro
command, which is bound as {CTRL-X}). The resulting macro may be
executed by the execute macro command, which is bound as
{CTRL-X} E.

Be aware that you should not expect this command to work too well
when imbedded in a function!

Second Edition A-40



r EMACS FUNCTIONS AND COMMANDS

r“‘ command_abort_handler Atom

The command_abort_handler atom is used in oonjunction with the
with_command_abort_handler function, which executes its arguments
up to the command_abort_handler atom. If an error is encountered,
the error flags (and throws) are reset, and execution continues
after the command_abort_handler token.

(See the description of with_command_abort_handler for further
information.)

cons Function

The cons function is a LISP function that adds a new item to the
r front of a list.

Format: (cons i 1st)

Argument: The argument i is an item with any data type. The
argument lst is almost always a list, but may have any data type if
you wish to produce a "dotted list".

Action: The data type of the value returned by cons is a list.

r. If the argument 1lst is a 1list, oons returns the list formed by
‘ adding the item i to to the front of the list lst.

If the argument lst is not a list, cons returns a dotted 1list (or
cons) whose car is the item i and whose cdr is the item lst.
convert_tabs Function

The convert_tabs function takes a list of numbers and converts them
’ ' to tab stops.

Format: (convert_tabs s)
Argument: The argument s must be a string.

Action: The string s must contain a series of numbers separated by
spaces, and the last number must end in a space. The numbers must
be positive and in increasing order.

EMACS sets the tab stops at positions specified by numbers in the
string.

The convert_tabs function returns the value NIL.

A-41 Seoond Edition



EMACS EXTENSION WRITING GUIDE

oonvert_to_base Function

The convert_to_base function oconverts an integer to a specified
numeric base and returns the result as a string.

Format: (convert_to_base n bv [1ln])

Arqument: The argument n must be an integer. The argument bv must
be either a string or a positive integer. The argument 1n, if
specified, must be an integer. o
Action: The convert_to_base function returns a string value.

EMACS proceeds as follows:

e If bv is an integer value, let b equal bv; otherwise, let b
equal the length of string bv.

e If bv is a string value, let s equal bv; otherwise, let s
equal the first b characters of the string
"0123456789abcdef ghijklmnopgrstuvwxy z"

e EMACS converts the integer n to a string of base b, using as
digits the characters of the string s. ILet t be the
resulting string of digits.

e Let czero equal the first character of the string s. (This
is usually the character "0".)

e If the argument ln is specified, and if the value of ln is
longer than the string t, EMACS inserts additional czero
characters to the front of the string t, but after a -, Iif
any, so that the length of the string t equals the value of
1n,

e If the argument ln is specified and is smaller than the
length of the string t, EMACS sets t equal to a string of
length 1n containing only *'s

EMACS returns the string t.
Examples:
(convert_to_base 255 16)
(convert_to_base 32 8 3)

These return the string values "ff" and "040", respectively.

Second Edition A-42

)

J



3

EMACS FUNCTIONS AND (QOMMANDS

copy_array Function
The copy_array function copies one array to another.
Format: (copy_array al a2 [idxl [n [idx2]]])
Arguments: The arguments al and a2 must be array values. Usually,
al and a2 are assigned array values by setq in conjunction with the

make_array function.

The arguments idxl, n, and idx2, if specified, must all be integer
values.

Action: The oopy_array function returns an array value. This
array value is ocomputed as follows:

e Let ml and m2 equal the number of elements in the arrays al
and a2, respectively. ml and m2 are the values specified as
the last argument to the make_array function calls that
created the arrays al and a2.

e If the argument idxl is not specified, let idxl equal 0.

® It is an error if idxl is <0 or >=ml.

e If the argument n is not specified, let n = ml.

e It is an error if either n<0 or idxl + n >= ml.

e If the argument idx2 is not specified, let idx2 = 0.

e It is an error if idx2 + n >= m2.

® EMACS copies n consecutive elements from the array a2 to the
array al. The n consecutive elements are taken from the
array a2, starting at index position 1dx2, and are oopied to
the array al, starting at index position 1dx1

The copy_array function returns the array al.

copy_cursor Function
The copy_cursor function returns a copy of the specified cursor.
Format: (copy_cursor cur)
Argument: The argument cur must be a cursor value.
Action: The copy_cursor function returns a cursor value.

EMACS makes a copy of the cursor value specified by the argument
cur, and returns that copy.

A-43 Second Edition



EMACS EXTENSION WRITING GUIDE

Example:
(setq old (copy_cursor current_cursor)

(forward_word) ...
(go_to_cursor o0ld)

The first line makes a ocopy of the current cursor position, and
assigns that to the variable old. The last line returns the cursor
to the original cursor position.

Note: Replacing the first line in the preceding example with

(setqg o0ld current_cursor)

would not have worked, because any cursor movement would have
changed the values of both current_cursor and old.

copy_region Command and Function

The copy_region command or function copies the current region into
the kill ring.

Command Format: {ESC} X copy_region
or
{ESC} W

Function Format: (copy_region)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS copies the characters between the current cursor and
the last marked position in the current buffer into the kill ring
without deleting them from the buffer.

The copy_region function returns the value NIL.

cpu_time Function
The cpu_time function returns the current cpu time in milliseconds.
Format: (cpu_time)
Argument: Nane.

Action: The cpu_time function returns an integer value. The
integer value is the cpu time used since login.

Second Edition A-44



9

)

9

EMACS FUNCTIONS AND COMMANDS

cr Command and Function
The cr command or function inserts a newline into the text buffer.

Command Format: [{ESC}n] cr
or
[{ESC}n] {CTRL-M} (carriage return key)

Function Format: (cr [n])

Argument: If the argument n is specified, it must be an integer.
Action: If the argument n is not specified, let n equal 1.
If n is less than or equal to 0, no action takes place.

If n is greater than 0, EMACS inserts n newline characters into the
text buffer at the current cursor position. The cr function
returns the value NIL.

i 7his i wothess, AS Han  Covnaot clelfeomaone efuly A"\-//QLI(
create_text_save_buffer$ Function Lfm mg—:‘bm! /T

The create_text_save buffer$ function goes to or creates the next
buffer in a circular list of ten buffers.

{Format: (create_text_save_buffer$ s)

/’Zl Sl
Arqument: The argument s must be a string value. wwee
Action: EMACS goes to or creates the next buffer in a circular

1ist of ten buffers. EMACS deletes the contents of that buffer,
and inserts the string s into that buffer.

The create_text save buffer$ function returns the value NIL.

cret_indent_relative Command and Function

The cret_indent_relative ocommand or function inserts a new-line
character into the text buffer at the current cursor position, and
then indents the next line to the first nonwhitespace character of
the previous line.

Command Format: [{ESC}n] {ESC} X cret_indent_relative
or ‘

[{ESCIn] {CTRL-X} {RETURN}

Function Fommat: (cret_indent_relative [n}])

Arqument: The argument n, if specified, must be an integer value.
Action: If n is not specified, let n=0.

A-45 Second Edition



EMACS EXTENSION WRITING GUIDE

y

A

Let k equal the number of whitespace characters at the beginning of
the current line. If the line is blank, k=0.

EMACS inserts a newline and k spaces into the text buffer at the
current cursor position

The cret_indent_relative function returns the value NIL.

cur_hpos Function

The cur_hpos function returns an integer value indicating the
current horizontal position of the cursor.

Format: (cur_hpos)

Arguments: None.
Action: The cur_hpos function returns an integer value. The value
returned equals one plus the number of characters on the current
line to the left of the current cursor position.

current_character Function
The current_character function returns the character at the cursor.
Format: (current_character [cur])
Argument: The argument cur, if specified, must be a cursor value.

Action: The current_character function returns a character value.

If the arqument cur is not specified, let cur equal the current
cursor.

The current_character function returns the character at the
specified cursor position.

current_cursor Variable

The current_cursor variable has the data type cursor and equals the
value of the current cursor position.

Note: The current_cursor variable is not normally used with
parentheses, because it is not a function. If you bind a variable
to current_cursor, the new variable also changes value whenever the
current cursor changes. For example,

(setq cur current_cursor)

binds the variable cur to the current cursor, with the result that

any cursor movement command changes the value of cur and

Second Edition A-46



EMACS FUNCTIONS AND COMMANDS

current_cursor. To make a copy of a cursor that will not change in
this manner, use the copy_cursor function.

Caution

You should never set current_cursor. EMACS may become very
confused.

current_handler Function

The current_handler function returns a string value representing
the current handler.

Format: (current_handler [chase_atom])

Ar t: If an argument is specified, it must be the atom
C _atom.

Action: The current_handler function returns a string value.

This is the object for the current command handler and is used with
handler_info. If chase_atom is specified, the function cell of the
atom is returned if the object is an atom. This is normal usage.

(See handler_info for more information.)

current_line Function

The current_line function returns a string value containing the
current line without the line-ending newline.

Format: (current_line [cur])

Arqument: The argument cur, if specified, must have a cursor
value.

Action: The current_line function returns a string value.

If the argument cur is not specified, let the value of cur be the
current cursor.

EMACS forms a string containing all the characters on the line

pointed to by the cursor cur, except the line—ending newline, and
returns that string value.

current_major_window Function
The current_major_window function returns the current major window.

Format: (current_major_window)

A-47 Seoond Edition



EMACS EXTENSION WRITING GUIDE

Arquments: None.

Action: The current_major_window returns a value with the window
data type. The value returned is the current major window.

Note: This is the window in which the current_cursor will be
redisplayed. You can use the value returned by
current_major_window in the go_to_window function. Incidentally,
the minibuffer is not a major window.

cursor Data Type

Cursor is a data type. Cursors are pointers to text in buffers.
When you assign a cursor value to a variable, such as by using setq
with the oopy_cursor function, EMACS attempts to make that cursor
continue to point to the same text in the buffer, no matter what
other changes in text are made to the buffer. A number of
operations may be performed on cursors, but most operations operate
on the current cursor, which is also the user's cursor. For
example, forward_char advances the current cursor forward by one
character. It is rather easy to save the current cursor position
(using copy_cursor and setq), execute a series of commands that may
alter it, and then use go_to_cursor to return the cursor to its old
value.

cursor_info Function

«ﬁwﬁx.

The cursor_info function returns information about the current
cursor position.

Format: (guzso{_j,nfo/p) (Curso(-w\% Qwrsor o ]:r\va\\']>
Arguments: The argument p must be an atom, as described below.

Action: EMACS returns a value whose data type depends upon the
atom p.

EMACS returns information about the current cursor position that
depends upon the property specified by the atom p. The atom p may
have any of the following values:

P Data Type Property

buffer _name string Name of the buffer
line_num integer Line number

char_pos integer Character position on line
sticky Boolean Cursor moves with text

Note: You cannot set any of these properties using cursor_inféi]

Use the make_cursor function to create a new cursor value.

ogriowet 3"\W3 com e woth b sk Shidey ok lesal

Seoond Edition A-48

J

p.

N\
~N



'ﬂn EMACS FUNCTIONS AND COMMANDS

~ cursor_on_current_line_p Function
The cursor_on_current_line p function returns a Boolean value
indicating whether the current cursor is on the same line as the
argument cursor.
Format: (cursor_on_current_line_p cur)
Arqument: The argument cur must be a cursor value.
Action: The cursor_on_current_line_p function returns a Boolean
value. The value is true if the current cursor is on the same line
as the argument cur, and is false if the current cursor is on a
different line.

" cursor_same_line_p Function

The cursor_same_line_p function returns a Boolean value indicating
whether two cursors point to the same line.

Format: (cursor_same_line_p curl cur2)

Arquments: The arguments curl and cur2 must be cursor values.

’. Action: The cursor_same_line_p function returns Boolean values.
The value is true if curl and cur2 refer to the same line, and
false if they refer to different lines.

Data Types
The PEEL data types are:
1 any 2 Boolean 3 character
‘f“ 4 integer 5 string 6 atom
7 function 8 list 9 cursor
10 buffer 11 dispatch_table 12 handler
13 buffer structure 14 window 15 array

16 PL/I subroutine

date Command and Function

The date command or function inserts a date into your text buffer
at the current cursor position.

Command Format: {ESC} X date

Function Format: (date)

)

Argqument: A numeric argument, if specified, is ignored.

9

A-49 Seoond Edition



EMACS EXTENSION WRITING GUIDE

Action: EMACS inserts the current date into your text buffer at
the current cursor position. The date format is illustrated by the
following:

TUE, 19 MAY 1981

The date function returns the value NIL.

decimal _rep Function

The decimal_rep function is the same as the integer_to_string
function.

decompose Special Form

The decompose special form is a special LISP function for arranging
the contents of one list into a pattern specified by another 1list.

Format: (decompose v f sl else s2)

Arguments: The arguments v and f must be list values. The
arguments sl and s2 are any PEEL code strings.

Action: EMACS evaluates the argument v, but not the argument f.

EMACS then matches the elements of the list £ with ocorresponding
elements in the list v, proceeding as follows:

e If the item in list f is NIL, the item in list v must also
be NIL.

e If the item in f is an atom, EMACS binds it locally to the
corresponding item in the list v.

e If the item is a list, EMACS binds the car of this item to
the car of the corresponding item in v, and the cdr of the
item to the cdr of the corresponding item in v.

If these local assignments are made without error, EMACS executes
the code sequence sl. If an error occurs during the matching,
EMACS executes the sequence s2.

(decompose '(a b c) (x . y)
(print x)
(print y)
else
(print "DECOMPOSITION ERROR"))

Second Edition A-50

J



EMACS FUNCTIONS AND OOMMANDS

- This prints: a
(b c)

(decompose '((a b) (¢ d)) (x (y 2z))
(print (list xy 2))
else
(print "DECOMPOSITION ERROR"))

This prints: ((a b) c d)

Note: This function is particularly useful for writing macros.
(See the &macro option of defun.)

def_auto Function

' The def_auto function makes another function (defined in a separate
file) available for automatic loading when it is invoked.

Format: (def_auto f h s)

Arguments: The argument f must be an atom. The arguments h and s
must be string values.

Action: EMACS defines the function f without actually loading the
| g— function. The function is thus available for use, but the time
i required to load the function is not spent until it is invoked.

The string h is saved as a help string for the function.

The string s is the pathname of the .EFASL file oontaining the

actual function definition. The first time the function is

invoked, EMACS goes to the file specified by the pathname s and

fasloads that file, replacing the definition of the function and

then executing it. Subsequent invocations of the function use the
r fasloaded definition directly.

The def_auto function returns the value NIL.
Example:
(def_auto poem

"Anthony's program to write poetry"
"ANTHONY>EMACS >POEM")

This statement defines poem as an EMACS command to load and then
execute the file ANTHONY>EMACS>POEM.EFASL. Presumably a file named
POEM.FM, containing the actual defcom for the "poem" command, had
previously been compiled, by using the dump_file command.

A-51 Second Edition



EMACS EXTENSION WRITING GUIDE

default_tabs Command and Function

The default_tabs ocommand or function restores tab positions to
every five spaces.

Command Format: {ESC} X default_tabs

Function Format: (default_tabs)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS restores the default tab positions, set at every
five spaces.

The default_tabs function returns the value NIL.

defcom Special Form
The defcom special form defines a new command.
Format:

(defcom command_name
&doc | &documentation <documentation_string>
&na | &numeric_arg
&repeat | &pass <variable> [&default <value>]
&args | sarguments ((<name> &prompt <string>
&default <value>
&string | &symbol | &integer )

s )
&prefix
&chararg | &character_argument
<body>

Arquments: (See Chapter 5.)
Action: EMACS defines a new command, as described in Chapter 5.

The defcom function returns the value NIL.

defun Special Form
The defun special form defines a new function.

Format: (defun name ((<argumentl><typel>) ...
. &optional ... &rest ... &quote ...

&returns <type>
&local (<variablel><type2>) ... )

<body>

Second Edition A-52

J



D

A

EMACS FUNCTIONS AND COMMANDS

Arquments: (See Chapter 5.)

Action: The defun function defines a new function, as described in
Chapter 5.

The defun function returns the value NIL.

You may also specify defun with the argument &macro. In this case,
the function returns a list that should be evaluated in the calling
context. (See page 127 of the second edition of Winston and Horn's
LISP for an explanation of the LISP backquote-and-comma syntax used
for smacro.)

Example: Consider the following definition:

(dgfun foo (x &macro)
(* ,x ,x))

In this case, reference to (foo bar) returns (* bar bar).

delete_blank_lines Command and Function

The delete_blank_lines ocommand or function deletes all blank lines
around the current cursor.

Command Format: {ESC} X delete_blank_lines
or
{CrRL-X} {CTRL-0}

Function Format: (delete_blank_lines)

Arqument: A numeric argument, if specified, is ignored.

Action: If the current cursor is on a nonblank line, EMACS moves
the cursor down to the first blank line, stopping if the end of the
buffer is reached. EMACS then deletes blank lines until the cursor
is again on a nonblank line or at the end of the buffer.

The delete_blank_lines function returns the value NIL.

delete_buffer Function

The delete_buffer function deletes the contents of a buffer without
saving it on the kill ring.

Format: (delete_buffer)

Arguments: None.

A-53 Second Edition



EMACS EXTENSION WRITING GUIDE

Actlon EMACS deletes the contents of the current buffer, without
saving it on the kill ring.

The delete_buffer function returns the value NIL.

delete_char Command and Function

The delete_char command or function deletes one or more characters
forward.

Command Format: [{ESC}n] {ESC} X delete_char
or
[{ESC}n] {CTRL-D}

Function Format: (delete_char [n])

Arqument: The argument n, if specified, must be an integer value.
Action: If n is not specified, let n equal 1.

If the value of n is 0, no action takes place.

If n is positive, EMACS deletes n characters beginning with the
character at the current cursor position and continuing forward,
stopping if the end of the buffer is reached.

If the value of n 1is negative, EMACS deletes -n characters,
beginning with the character preceding the current cursor p051t10n,
and continuing backward, stopping if the beginning of the buffer is
reached.

If the absolute value of n is greater than 64, a prompt "Count is
<n>. Are you sure?" is displayed.

The delete_char function returns the value NIL.

delete_point_cursor Function

The delete_point_cursor function deletes all the text between the
current cursor position and the argument cursor position.

Format: (delete_point_cursor cur)
Argument: The argument cur must be a cursor value.

Action: EMACS deletes all text between the current cursor position
and the cursor position specified by the argqument cur.

The delete_point_cursor function returns the value NIL.

Second Edition A-54

J



EMACS FUNCTIONS AND COMMANDS

delete_region Command and Function

The delete_region command and function deletes the current marked
region without putting it onto the kill ring.

Command Format: {ESC} X delete_region

Function Format: (delete_region)

Arqument: A numeric argument, if specified, is ignored.

Action: EMACS deletes all the text in the region between the
current cursor position and the marked position. The text is not
saved on the kill ring.

The delete_region function returns the value NIL.

delete_white_left Function

The delete_white_left function deletes all oonsecutive whitespace
to the left of the current cursor position.

Format: (delete_white_left)
Arguments: None.
Action: The delete_white_left function returns a Boolean value.
If there is a whitespace character at the current cursor position
and a whitespace character to the left of the current cursor
position, EMACS deletes all oonsecutive whitespace characters to
the left of the current cursor position, and returns the value
true.
If those conditions are not met, EMACS takes no action and returns
the value false.

delete_white_right Function

The delete_white_right function deletes all ocontiguous whitespace
to the right of the current cursor position.

Format: (delete_white_right)
Arquments: None.

Action: The delete_white_right function returns a Boolean value.

A-55 Second Edition



EMACS EXTENSION WRITING GUIDE

If there ';s a whitespace character at the current cursor position
and a whitespace character to the right of the current cursor
position, EMACS deletes all consecutive whitespace characters to

the right of the current cursor position, and returns the value
true.

If those conditions are not met, EMACS takes no action and returns
the value false.

delete_white_sides Function

The delete_white_sides function deletes all whitespace characters
surrounding the current position.

Format: (delete_white_sides)

Arguments: None.

Action: The delete_white_sides function returns a Boolean value.
If there 1is a whitespace character at the current cursor position,

EMACS deletes it and all consecutive whitespace characters to the

right and to the left of the current cursor position, and returns
the value true.

If the character at the current cursor position is not a whitespace
character, EMACS returns the value false.

Note: The delete_white_sides function has the same effect as the
white_delete function.

delete_word Command and Function
The delete_word command or function deletes one or more words.
Command Format: [{ESC}n] {ESC}X delete_word

or
[ESCin] {ESC} D

Function Format: (delete_word [n])

Arqument: The argument n, if specified, must be an integer whose
value may be positive, 0, or negative.

Action: If n is not specified, let n equal 1.
If the value of n is 0, no action takes places.
If the value of n is positive, EMACS deletes n words in the text,
beginning with the word at the current cursor position and

continuing forward. Deletion stops if the end of the buffer is
reached.

Seocond Edition A-56

J



D)

EMACS FUNCTIONS AND COMMANDS

If the value of n is negative, EMACS deletes -n words beginning
with the word preceding the current cursor position, and moving
backward. Deletion stops if the beginning of the buffer is
reached.

The delete_word function returns the value NIL.
Note: The token_chars atom contains a list of the characters that
define a word or token.

describe Command and Function

The describe ocommand or function gives you information about an
EMACS command.

Command Format: {ESC} X describe
or
{CTRL-_} D

Function Formmat: (describe [s])

Argument: A numeric arqument, if specified, is ignored.
The argument s, if specified, must be a string value.

Action: If the argument s is not specified, EMACS prompts you for
a string s.

If the string s does not begin with the character @, EMACS displays
a list of all function names that begin with the string s.

If the string s begins with a single @ character, EMACS prints a
list of all function names that contain the remaining characters in
the string s anywhere in their name.

If the string s begins with two @ characters, EMACS prints a list
of all function names for functions that reference any other
function beginning with the remainder of the string s.

dispatch Special Form

The dispatch special form compares the text following the current
cursor against a set of strings to determine what action to take.

Format: (dispatch
X1 sl
X2 s2

otherwise sx)

Arquments: Each argument, x1, x2, and ... may consist of one or
more string or character values.

A-57 Second Edition



EMACS EXTENSION WRITING GUIDE

Each argument sl, s2, ..., and sx may consist of one or more PEEL
statements.

Action: EMACS compares the text following point to x1, x2, and ...
until a match is found. If a match is found, then the
corresponding PEEL statement sl, or s2, or ... is executed, and
the value of that statement is returned as the value of dispatch.
Otherwise, the statement sx is executed, and the value of that
statement is returned as the value of dispatch.

If no match is found and no "otherwise" statement is specified,
dispatch returns the value NIL.

(See Chapter 4 for more information.)

dispatch_info Function

The dispatch_info function gets or sets information on a mode or
dispatch table. It returns the old value of the property.

Format: (dispatch_info ét p [v])

Arguments: The argument dt must be a dispatch table. The argument
p must be an atom, as described below under action. The argument
v, if specified, must have a data type compatible with the argument
B.

Action: The dispatch_info function can be used to set the handler
associated with keys. A mode value is a dispatch table that is
found using the find_mode function. The arqument to find_mode is
either an atom or a string (that is returned by the function). The
returned value is the mode value. The following modes are
predefined:

main This is the main character dispatch mode.

X This is the dispatch table for the {CIRL-X} prefix
in the main dispatch table.

esc This is the dispatch table for ESCAPE in the main
dispatch table.

mb_mode This is the dispatch table for minibuffers.

reader This is the dispatch table used by the keyboard
reader. It is used, for example, to define {CTRL-_}
to be help_on_tap. If the function returns a string
or character value, the result is returned in place
of the character actually read. Otherwise, the
reader will read another character from the
keyboard. Note that the "raw" reader does not
invoke reader functions.

Second Edition A-58

J



)

)

EMACS FUNCTIONS AND OOMMANDS

The dispatch_info function can be used to interrogate and modify
dispatch tables. The argument dt is a dispatch table (that is, a
mode). The argument p is either the quoted atom 'name, in which
case the name of the mode is returned as a string, or it is a
character, string, or integer value identifying the entry to be
interrogated and/or modified.

The argument v, if specified, is the new object to be placed into
the dispatch table.

The value returned by dispatch_info is determined by the following
rules:

@ The function returns an atom if the dispatch table is bound
to a command or function. The aton is the command or
function.

e The function returns NIL if nothing is bound to the entry.

e The function returns a dispatch table (mode) if the entry is
a prefix key, that is, an intermediate part of a key path.
(For example, the {ESC} entry in main is bound to escape
mode. )

Note: To determine whether a command (handler) or function is
bound, use fsymeval on the returned atam. If it is a handler, then
handler_info may also be useful.

display_error_noabort Special Form

The display_error_noabort special form is the same as the
error_message function.

do_forever Special Form

The do_forever function performs an infinite loop.

Format: (do_forever sl [s2 ...])

Arquments: The arguments sl, s2, and ..., if specified, are any
PEEL statements to be executed in the loop.

Action: PEEL executes all the arguments, sl, s2, and ..., and

repeats execution of them in an infinite loop until stop_doing is
executed.

The do_forever function returns the value NIL.

A-59 Second Edition



EMACS EXTENSION WRITING GUIDE

do_n_times Special Form

The do_n_times special form executes a loop for a specified number
of iterations.

Format: (do_n_times n sl [s2 ...])
Arguments: The argument n must be an integer value.

The arguments sl, s2, and ..., if specified, may be any PEEL
statements.

Action: If the value of n is 0, or negative, no action is taken.

If the value of n is positive, PEEL executes the statements sl, s2,

and ... ina loop for n iterations, or until stop_doing “is
executed.

The do_n_times function returns the value NIL.

downcase Function

The downcase function oonverts uppercase letters in its string
argument to lowercase.

Format: (downcase s)

Argument: The argument s must be a string or character value.
Action: The downcase function returns a string value. The string
1s computed by returning a copy of the string s after converting
all uppercase letters to their corresponding lowercase letters.

dt Command and Function

The dt command or function inserts the current date and time into
your text buffer at the current cursor position.

Command Format: {ESC} X dt

Function Format: (dt)

Argument: A numeric argument, if specified, is ignored.

Action: EMACS inserts the current date and time into your text
buffer at the current cursor position. An example of the format
used is as follows:

05/19/81 11:06:57

Second Edition A-60

J



9

EMACS FUNCTIONS AND COMMANDS

dump_file Command

The dump_file command "compiles" PEEL source to a fasdump format
file.

Format: {ESC} X dump_file
Argument: A numeric argument, if specified, is ignored.
Action: EMACS partially compiles the PEEL program in the current
text buffer and dumps it to a file. If the buffer name is of the
form x.FM, EMACS creates the fasdump file x.EFASL. If the buffer
name does not have the suffix .EM, EMACS simply adds the suffix
.EFASL to the buffer name.

else Atom
The else atom is used in the if function. (See that function
description for further information.)

empty_buffer_p Function
The empty_buffer_p function tests if the current buffer is empty.
Format: (empty_buffer_p)
Arguments: None.

Action: The empty_buffer_p function returns a Boolean value. The
value returned is true if the current buffer is empty and false if
the current buffer contains text.

end_line Command and Function

The end_line command or function moves the cursor to the end of the
current line.

Command Format: {ESC} X end_line
or
{CTRL-E}

Function Format: (end_line)

Arqument: A numeric arqument, if specified, is ignored.
Action: EMACS moves the cursor to the end of the current line.

The end_line function returns the value NIL.

A-61 Second Edition



EMACS EXTENSION WRITING GUIDE

end_of buffer_p Function

The end_of buffer_p function tests whether the current cursor is at
the end of the buffer.

Format: (end_of_buffer_p)
Arquments: None.
Action: The end_of buffer_p function returns a Boolean value. The
value returned is true if the current cursor is at the end of the
buffer; otherwise, it is false.

end_of _line_p Function

The end_of_line_p function tests whether the current cursor is at
the end of the line.

Format: (end_of_line_p)

Argguents : None.

Action: The end_of_line_p function returns a Boolean value. The
value returned is true if the current cursor is at the end of the
line; otherwise, it is false.

eolp Function

The eolp function is an abbreviation of end_of_line_p.

eq Function
The eq function tests whether its arguments are the same object.
Format: (eq argl arg2)
Arquments: The arguments argl and arg2 may have any data type.
Action: The eq function returns a Boolean value. The returned
value is true if argl and arg2 are the same object, and false if
they are different objects.
Note: In almost all cases, you should use the = function in
preference to the eg function. To understand the difference,

consider the following two examples:

(eq 2 2)
(e(l "all lla")

Second Edition A-62

J



9

3

D

EMACS FUNCTIONS AND COMMANDS

The first of these examples is always true because the integer 2
always becomes the same object. But the second example is never
true (if typed in the minibuffer), because a new copy of the string
"a" is allocated for each argument by the reader. However, if the
= function is used instead of eq in the above two examples, the
values of both would be true.

error_message Special Form

The error_message special form displays an error message in the
minibuffer. It does not abort the current command.

Format: (error_message s)

Arqument: The argument s must be a string.

Action: EMACS displays the string s in the minibuffer.

The error_message function returns the value NIL.

Note: Unlike the info_message function, this function forces a

screen update even if redisplay has been suppressed, for example
with with_no_redisplay.

Escape Sequences

Escape sequences provide a method to enter control characters so
that they are printable. The following escape sequences are
available:

“hnn The character with hexadecimal code of nn

“cC The control character corresponding to the
character C

“n The newline character

" or "q The string delimiter (double quotation mark)
The string escape character (tilde)
“<nl> Concealed newline, allowing strings to be

ocontinued on the next line without including
the newline character in the string

europe_dt Command and Function

The europe_dt command or function inserts the current date in
European format into your buffer.

Command Format: {ESC} X europe_dt

A-63 Second Edition



EMACS EXTENSION WRITING GUIDE

Function Format: (europe_dt)

Argument: A numeric argument, if specified, is ignored.
Action: EMACS inserts the current date in numerical European
format, dd/hm/yr, into your text at the current cursor position.
The format is similar to the following:

19/09/85

The europe_dt function returns the value NIL.

eval Function

The eval function is a LISP function that evaluates its arguments
and returns the result.

Format: (eval f)
Argument: The argument £ is a form or any executable PEEL program.
Action: PEEL executes the form f and returns the result.
Note: You can evaluate a form f simply by executing it as part of
your PEEL, program. Therefore, if you are writing a simple PEFL
program and explicitly calling the eval function, you are probably
doing something wrong. The eval function is primarily useful in
programs that deal with LISP or PEEL itself, rather than programs
about string manipulation.

evaluate_af Function
The evaluate_af function evaluates an active function in PRIMOS.
It is similar to the af function, but returns a string value rather
than inserting it into the current buffer.
Format: (evaluate_af s)
Argument: The argument s must be a string value.

Action: EMACS evaluates the string s as an active function in
PRIMOS, and returns a string value.

Example: The function
(evaluate_af "[ATTRIB <0>CMDNCO -TYPE]")

returns the string value "UFD".

) J

Second Edition A-64

) )



-

“r
r

)

EMACS FUNCTIONS AND COMMANDS

exchange_mark Command and Function

The exchange_mark command or function exchanges mark and point.

Command Format: {ESC} X exchange_mark
or
{CTRL-X} {CTRL-X}

Function Format: (exchange_mark)

Arqument: A numeric arqument, if specified, is ignored.

Action: EMACS exchanges mark and point. That is, the current
cursor position is set equal to the last marked position, and the
mark is reset to the cursor position prior to the beginning of this
command.

The exchange_mark function returns the value NIL.

execute_macro Command and Function

The execute_macro command o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>